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NOMENCLATURE

A Area

a Acoustic speed

D Diameter

£ frequency

K Annulus radius ratio (R,/Ry)

M Mach number

P Pressure

R Radius (Also Radial Distance from the Nozzle-Exit to the Measuring
Location).

Ry Radius of the nozzle lip

R, Radius of the plug at the sonic point

v Velocity

W Annulus width of plug nozzle

a Inclination of the convergent nozzle lip to the nozzle axis.

B  Parameter, V?ﬁ?*:_I)

Y Ratio of specific heats

v Prandtl-Meyer angle

o] Density

G Percent porosity defined as 100 x the ratio of the total area of the
perforations to the surface area of the conical plug.

|} Inclination of the surface of the contoured plug at the sonic point.

& Ratio of reservoir absolute pressure to the ambient pressure = p./p,

6 Azimuthal angle of the location of measurement (angle between the
center of the nozzle-exit to the center of the microphone and the
downstream jet flow axis).

Subscripts

a Ambient conditions (in the anechoic chamber)

d Design condition

e Exit condition

ISA Standard atmospheric condition

3
R
t

Fully expanded jet flow
Reservoir conditions

Throat (the sonic condition)



I. INTRODUCTION

The noise radiated by high pressure ratio improperly-expanded
turbulent heated jet flows (or turbo-jet exhaust) is intense [l-5]f In
the acoustic field of such high speed single-stream jet flows, often the
mixing and the shock-related noise components are concomitantly present.
The intensity of jet-mixing noise from a single subsonic turbulent jet
flow is predicted by Lighthill relation [6]. The aerodynamic noise
generated by jet flows depends upon the mean speed, the mean flow
velocity gradients just downstream of the nozzle exit and the turbulence
and mixing characteristics. In a high-speed shockless heated turbulent
jet flow, if the turbulence eddies are convected at supersonic phase-
speed relative to the ambient conditions, Mach wave radiation may be
generated [7].

In an improperly-expanded jet flow, repetitive shock structure is
present. The passage of flow fluctuations through such repetitive shock
structure results in the generation of either the broadband shock-
associated noise [8] and/or the feed-back type screech noise [1,9]. For
high pressure ratio improperly-expanded turbulent jet flows, the noise
generating mechanisms of the major components of the radiated noise are
often coupled. The strength and the spacing of the repetitive cellular
shock structure, and the strength and the coherence of the flow fluctuation
passing through the repetitive shock-fronts play an important role in the
generation of the shock-related noise. Normally, the weaker the
repetitive shock fronts are, the lower the level of the shock-associated
noise intensity is [10,11]. Moreover, for the same shock strength, if the
fluctuations of the turbulent flow convected through the shock front are
more intense, the acoustic radiation is stronger [12]. Therefore, to
suppress the aerodynamic noise components radiated by improperly-expanded
single stream jet flows, the strength of the repetitive shock structure

and its spacing, and the strength and the coherence of jet flow

*
Numbers in brackets refer to the references listed on pp. 114-116.
Only a limited number of typical references are cited.



fluctuations convected through the shock fronts need to be modified such
that both the noise-contributing sources and the noise generating
mechanisms are reduced in strength and effectiveness. Moreover, it is
imperative that the desired changes in the exhaust flows are achieved at
an acceptable and minimum thrust and weight penalty.

To achieve such acoustically favorable flow and shock structure
modifications in improperly-expanded jet flows, the use of the
‘equivalent' dual-stream coaxial co-flowing contiguous supersonic jet
flows operated in the inverted pressure mode (i.e. the outer (annular)
jet is at a higher above-critical pressure ratio than the weakly super-
critical pressure ratio of the inner jet) have been shown to be effective
[13-17]. Also, a contoured convergent-divergent nozzle is often
considered favorably as a design option for controlling the shock-
associated noise component of modern high specific thrust engine exhaust.

The shock-associated noise component is eliminated if the exhaust flow
of a contoured convergent-divergent nozzle is shock free. However, such
exhaust-nozzles, of necessity, are operated over an extended range of
pressure ratios. Therefore, at the off-design pressure ratios of a
contoured C-D nozzle, the repetitive shock structure is present in the
jet flows. At low supercritical pressure ratios, the shock structure may
be present even in the diverging part of the contoured C-D nozzle.
Still, the overall sound pressure level as a function of the fully-
expanded jet flow Mach number Mj or the shock-associated noise from both
the over- and the under-expanded C-D nozzle, (especially at higher
azimuthal angles with reference to exhaust flow) is significantly lower
than those of underexpanded jet flows from an equivalent (i.e. of the
same mass flow rate, thrust, pressure ratio and exhaust area) single
convergent round nozzle [18,19].

Some recent acoustic studies of supersonic jet flows from plug-

nozzles have also shown appreciable noise suppression effects [20-23].
As a part of the present study, the use of a contoured plug-nozzle
operated either at its design pressure ratio or even over an extended
range of off-design pressure ratios has been reported to result in
substantial reductions in shock-related noise from supersonic jet flows

[20]. Even when an uncontoured conical plug is incorporated in either an

externally-expanded convergent plug-nozzle or an externally-internally




expanded convergent-divergent plug nozzle of high radius-ratio K,
compared to an equivalent convergent nozzle, significant reductions in
shock-related noise components have been reported [(20,21].

Mastrello [22] has shown experimentally that a conical convergent
round nozzle modified by a porous cylindrical center-body of a tapered
conical termination mounted along the nozzle-axis when operated at higher
than the critical pressure ratios, results in considerable noise
reductions. Because of the distributed porosity of the center-body, the
repetitive shock-structure of the underexpanded jet flow is weakened and
the observed noise-reductions are mostly in the shock-associated
component. More recently such aerocacoustic investigations were extended
by Kibens and Wiezien [23] for center-bodies similar to the one's used by
Maestrello. The gasdynamical aspects of the underexpanded jet flows from
such combinations of convergent nozzle and porous center-bodies were
examined and the reductions in shock-related noise observed by Mastrello
were confirmed. 1In these studies, for most configurations of the
convergent nozzle and center-body combinations, the porous center-body
with a tapered conical termination was extended through the entire length
of the supersonic region of the underexpanded jet flow. The geometrical
configuration of such a combination of a convergent nozzle with a long
cylindrical center-body of high annulus radius ratio does not serve
efficiently the aerodynamic function of a conventional plug-nozzle which
is to reduce the thrust loss of a contoured C-D nozzle operated in the
overexpanded mode at low super-critical pressure ratios. Therefore, the
elimination of the repetitive shock structure by the use of a short
contoured externally expanded plug with a pointed termination suggests
itself as an attractive alternative. The aerocacoustics of such short
plug-nozzles with low annulus radius ratios have not been studied before.
The aeroacoustic investigations reported here, were undertaken
to study the far-field overall sound pressure levels, the shock-related
noise component and the nature of the repetitive shock structure of
supersonic jet flows of plug nozzles with contoured and short conical
plugs of solid surface and pointed termination. Furthermore, the effects
of porosity of the conical plug surface on the repetitive shock

structure and the resulting noise reductions were also studied.



PLUG-NOZZLE AT SUPERCRITICAL PRESSURE RATIOS

A plug-nozzle is a modification of a conventional convergent-
divergent nozzle where downstream of the sonic throat, the supersonic
expansion either in part or completely occurs externally [24-26]. A
schematic of an externally-expanded plug nozzle is shown in Fig. 1. The
contour of the externally-expanded plug surface at the design pressure
ratio is such that all the rays of the centered expansion fan originating
at the nozzle lip are intercepted at the plug surface and cancelled. The
final expansion-ray intersects the plug at its pointed apex. At the
throat of a contoured plug nozzle, the angle at the lip of the convergent
nozzle is so selected that at the design pressure ratio of the plug-
nozzle, the free boundary of the isentropic jet flow is parallel to the
nozzle axis and an exit to throat area ratio for an isentropic flow at the
selected design Mach number is achieved at the apex of the contoured plug
(i.e. at the plug-nozzle exit). For a given design Mach number, such an
isentropic plug has the shortest possible length and is shorter than that
of the divergent part of an conventional contoured C-D nozzle with its
initial expansion section, of the same design Mach number and throat area.

When a contoured plug nozzle is operated at a pressure ratio below the
design pressure ratio (designated here as the over- expanded mode), the
final ray intersects the plug surface at a location upstream of the plug-
apex and the compression wave fronts originate from the remainder of the plug
surface. Depending upon the pressure ratio, repetitive oblique shock
structure may develop on the plug surface and/or farther downstream in the
jet flow. For the pressure ratio higher than the design pressure ratio
(underexpanded mode), part of the expansion waves escape the plug surface
and result in repetitive shock structure in the jet flow.

The nature of the shock-structure and the jet flows issuing from a
solid/porous plug-nozzle operated at the super-critical pressure ratios
are dependent upon a large number of geometrical and configurational
variables of the plug-nozzle noted below.

(1) The annulus-radius ratio K:

If the design flow Mach number of the contoured-plug nozzle is

fixed, then its annulus-radius ratio K is also fixed (see Appendix I).
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The higher the design Mach number, the larger is the associated annulus-
radius ratio to achieve an isentropic (shockless) jet flow. The
mismatching of the annulus-radius ratios and operating pressure ratio or

flow Mach number will result in repetitive shock structure.

(2) Configuration of the nozzle and plug combination:
Commonly either a combination of a convergent nozzle and an
externally- expanded plug (Fig. 1) or a combination of a C-D nozzle and an

externally-expanded plug [24), are used.

(3) Other relevant geometrical parameters of plug-nozzles:

The half-angle of the conical plug, the plug length and the
initial convergent nozzle wall angle at the nozzle lip also influence the
repetitive shock structure in the jet flow. The shock structure
downstream of the plug-nozzle exit is strikingly different depending upon

whether the plug termination is pointed (Fig. 8) or truncated [27].

(4) Porosity of the Plug Surface:

To optimize the modifications and the weakening of the repetitive
shock structure of plug-nozzle flows by the porosity of the conical plug,
the diameter, the location along the plug surface, the distribution and
the depth of the perforations are relevant factors. Whether or not these
are through-perforations opening into the hollow body of the conical plug
and whether or not the perforated hollow plug is vented to the ambient
surrounding, may also play a role in the flow and shock structure
modifications.

Obviously, a parametric study of the roles of such a large number of
geometrical and operational variables of a plug either with a solid
surface or a combination of solid/porous surface is unwieldly.

Therefore, to underscore the aeroacoustic role of plug-nozzles with short
plugs and the importance of porosity in short plug nozzle flows at
supercritical pressure ratios, the plug-nozzles of a few selected key

geometrical parameters and configuration were selected.




The objectives of this experimental study are:

(i) To design a contoured plug to obtain a shockless supersonic jet
flow at a relatively low design pressure ratio (i.e. of a low supersonic
low Mach number) :

The shock-associated noise component from the shockless
supersonic jet flows issuing from such a plug-nozzle with a contoured
pointed plug at its design condition will be absent. Since the contoured
plug-nozzle flow is essentially wake-free, the dominant noise generating
mechanism will primarily be due to turbulent mixing of the free-jet flow.

The far-field acoustic studies of such contoured plug-nozzle flows
will generate the baseline acoustic spectral data for comparative
assessment of the noise suppression of the improperly expanded supersonic

jet flow issuing from 'equivalent' plug-nozzles of other configurations.

(ii) To study the role of a short solid uncontoured conical plug with
a pointed termination as a design option for controlling the shock-
associated noise in improperly expanded jet flows: The configuration of
the uncontoured short conical plug is to be so selected that its acoustic
and the aerodynamic performance is close to that of the contoured plug
when both plug-nozzles are operated at the design pressure ratio of the

contoured plug- nozzle.

(iii) How best to adapt the plug-porosity concept to optimize the
design of a short solid/porous conical plug to maximize reductions of
shock-associated noise:

The aim is to modify, by an appropriate selection of the porosity of
the plug, the repetitive shock structure in the improperly expanded jet
flow issuing from a plug-nozzle with an uncontoured plug such that the jet
flow features nearly similar to those of an isentropic contoured plug at
the design pressure ratio, are achieved. This means that porosity effects
should lead to the weakening of the repetitive shock structure and that
the free flow boundary at the plug apex (plug- nozzle exit) ought to be
nearly parallel to the plug or jet flow axis.



II. EXPERIMENTAL FACILITIES AND PROCEDURE

II.1 Compressed Air, Flow Controls and Plug-Nozzle Supply System.

The compressed air is supplied by a Worthington HB-2 two stage
oilless reciprocating air compressor of pumping capacity 7.9 scm/min. and
the maximum discharge pressure of 3.435 MPa. The compressed air is
cooled, dried and stored in five tanks of total capacity 31.15 m® . The
line pressure is reduced through a 2" Masoneilan camflex valve from a
maximum of 3.435 MPa to 1.037 MPa in the 10.16 cm. diameter, 45.72 m.
long supply line between the storage tanks and the jet room in the
acoustic facility. Upstream of the supply chamber, a 5.08 cm pressure
control valve and pressure regulator is provided to maintain the supply
chamber stagnation pressure at a pre-selected constant value. In the
blow~-down mode of operation of the compressed air facility, it is
possible to operate a plug-nozzle of throat area equivalent to a
convergent nozzle of 5.08 cm exit diameter, at a nozzle pressure ratio
€ = 4.5 with run time of about 11 minutes.

The details of the stainless steel plenum chamber for the plug-nozzle
jet rig are shown in Fig. 2. This plenum chamber is mounted in the
anechoic chamber in series with an existing cylindrical plenum chamber
(diameter 25.4 cm; length 1.52 m) with a 5.08 cm exit diameter which was
used in earlier aeroacoustic studies to supply the inner nozzle of the
coaxial dual-stream supersonic jet flow configuration [14]. The new
plenum chamber has an overall length of 72.06 cm. and an inside diameter
of 30.48 cm. The flow velocity in the cylindrical part of the plenum
chamber when the convergent-nozzle of exit d = 4.45 cm is choked, is
noted to be about 7 m/s. This ensured that the noise generated by the
flow in the plenum chamber duct is comparatively low.

The plenum chamber incorporates a removable plug holder. A wire
screen (50% porosity) is installed downstream of the plug-holder. The
mechanisms have been provided to ensure sufficiently accurate alignment
of the plug holder in three transverse directions. The plug is mounted
axially aligned with a slender cylindrical plug holder. This type of
axial support for the plug was preferred over the usual lateral strut
supports as the former is less likely to cause flow inhomogeneity and to

generate unwanted tones and excess-noise.




IX.2 Acquisition of the Acoustic Data.

The acoustic data were recorded in an anechoic chamber with free-
space dimensions from wedge-tip to wedge-tip of approximately
8m x 6.5m x 4.28m. The chamber is anechoic down to a frequency of 150 HZ
[14].

One-third octave sound pressure level spectra of the far-field noise
of the various plug-nozzle configurations and modes of operation were
recorded at eight equally spaced locations, 15° apart between azimuth
angles 6 = 15° to 120°, measured with reference to the downstream jet
flow axis on an arc of radius R = 3.05m from the nozzle exit in a
horizontal plane containing the nozzle axis and the axis perpendicular to
the face of the condenser microphone. For a convergent nozzle of exit
diameter D = 4.5 cm, the microphone location is at R/D = 65. Thus, the
noise measuring stations are in the acoustic far-field of the jet noise.
The microphone positioning is accurate within + 1°. Standard B and K
acoustic instrumentations comprising of B & K, Type 4135, 1/4" condenser
microphone, with grid in place, at normal incidence (i.e. zero angle of
incidence) band-pass filter set centered at 12.5 to 100 kHz; B and K Type
2305 level recorder were used to record the acoustic data. The condenser
microphone was calibrated by B & K type 4220 piston-phone before and
after each test run.

The recorded one-third octave sound pressure level spectra were
analysed in the range of frequency 200 Hz to 100 kHz. The lower
frequency limit was based on the consideration that the design cut-off
frequency for the anechoic chamber is 150 Hz. The upper limit of
frequency 100 kHz was dictated by the frequency content and the noise
levels measured for the various configurations of the model solid/porous
plug-nozzles. The ambient pressure, and the dry and wet bulb
temperatures in the anechoic chamber were measured during the entire
course of acoustic data accumulation. For analysis of acoustic data, the
lossless spectral data were obtained by applying the microphone free-
field and absorption (humidity) corrections to the recorded 1/3 octave
sound pressure level spectra. The microphone corrections of the 1/4"
condenser microphone with grid and normal incidence were applied from
calibration data provided by the manufacturer. These corrections are

listed in Table I-1 of Appendix I,
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The corrections for acoustic absorption due to humidity based on a
relation by Evans and Bass [28], were applied. The details of these
corrections especially at higher frequency spectral content for the model
plug-nozzles and their bearing on the schemes of reduction of the
acoustic spectral data are available in Ref. 43.

The experimental facility and procedure for recording acoustic data
were validated by operating the convergent nozzle (plug-nozzle with the
plug and its mounting assembly removed) at a range of subsonic velocities
and showing the noise intensity (OASPL at 8 = 90°) to follow Vj7'7 which

is very close to the expected V,? dependence [6].
b

II.3 Optical Records.

A condenser-spark light source, a 48" focal length, front coated
12" diameter parabolic mirror and a film holder are the basic components
of the optical system used to record spark shadowgraphs of the jet flows
issuing from the convergent nozzle and the various plug-nozzles. Spark
source of light of about 1 Msec duration was generated by discharging,
six cylindrical low inductance condensers, each of 0.04 pfd capacity
(maximum 10 kV; normally used at 7.5 kV), arranged on a ring around the
magnesium electrodes. The front electrode had a 1 to 2 mm adjustable
diameter hole to serve as the point source of light. The angle between
the incident light beam and the axis of the parabolic mirror was adjusted
to be within 7° by mounting a front coated plane mirror between the light
source and the parabolic mirror. To record the spark shadowgraphs, the

film was mounted at a distance of about 7" from the jet axis.

III. NOZZLE CONFIGURATIONS AND MODES OF OPERATION

III.1 Convergent Nozzles

For the aerocacoustic studies reported here, the basic plug-nozzle
assembly is a combination of a convergent nozzle with a centrally mounted
externally-expanded short plug of pointed termination. The plug-nozzle
operated without the plug and its mounting assembly was used as the basic
convergent nozzle.

One of the plug-nozzles was designed with a contoured plug to achieve an isentroph

an isentropic (shockless) jet flow at its design pressure ratio,
E, = Absolute Reservoir Pressure
d ambient pressure

= Pp/p, = 3.67 (i.e. the design Mach

-11~



number My = 1.5). Therefore, for the free jet flow boundary of the fully-
expanded jet flow to be straight and parallel to the plug axis, the
inclination of the wall of the convergent nozzle must be equal in
magnitude and opposite in direction to the Prandtl-Meyer angle Vv =
11.905°. To avoid acoustic reflections and screech generation, a fairly
sharp nozzle-lip (thickness of approximately 0.5 mm) was provided.

The stainless steel convergent nozzle used in the present studies was
machined in two parts. The first portion is carefully welded to the
plenum chamber avoiding any inside protuberance or misalignment and the
second portion is a detachable extension of the first. This was done so
that this convergent nozzle could be adapted for use in any other future
plug-nozzle studies at different design Mach numbers. The two parts of
the converging nozzle have finely polished extremely smooth matching
inner profiles insuring the absence of flow separation at the joint. The
detachable part of the converging nozzle is carefully contoured to
terminate smoothly at the throat of plug-nozzle into a conical lip having
a wall angle of 11.90° with the central nozzle axis.

The exit diameter of the convergent nozzle is 4.5 cm and its overall
length is 17.85 cm. The area ratio of the nozzle inlet to the nozzle
exit is about 46. The geometry and installation of the convergent nozzle

is shown in Fig. 2.

IITI.2 Contoured Plug

The design of an isentropic contour of the plug for an externally-
expanded plug-nozzle is based on the following key considerations™ .

(i) The expansion waves are assumed to be centered at the lip of the
convergent nozzle. For the free jet boundary at the lip to be straight
and parallel to the nozzle axis, the convergent wall has to have an

inclination, o , to the jet axis, given by,

- = jxr -1 r-1 2 _ 1y - -1 2 _
lol iviM) | y-1 - tan 7 1 (Mg 1) tan MJ 1

where V(M) is the P-M function for the design flow Mach number.

* An alternate simple approximate method for a nearly isentropic plug

contour developed in the course of the present investigation is
outlined in Appendix II (also see Reference 29).

-12-




(ii) The individual expansion waves emanating from the nozzle lip

and incident on the plug-surface are all cancelled by suitable local
compression turns provided at the plug surface. The last expansion wave
(corresponding to the design Mach number M;) must end at the plug tip (or
apex) and it has to be straight, being the start of the uniform simple
region. The plug contour as such is a streamline of the potential
(isentropic) flow issuing from the plug-nozzle.

The exact method of plug contour design is based on the method of
characteristics (MOC). The main difficulty in using the method of
characteristics for axisymmetric jet flows lies in the flow region near
the jet axis (radial distance R - 0) where a very fine characteristic
mesh is required for reasonable accuracy and the problem of numerical
instability is known to plague the computations in the center-line
region.

A methodology of designing an isentropic supersonic inlet-plug using
the MOC was developed by Connors and Meyer [30]. To avoid the
computational difficulty near the flow centerline, a finite inlet-plug tip
angle and a finite strength shock extending from the inlet~plug tip to the
plug-nozzle lip were assumed. The plug contours were predicted for
relatively high pressure ratios. The approach, as suggested by this
study, also applies to prediction of isentropic plug contours for plug-
nozzles. For an ideal contoured plug-nozzle, the annulus-radius ratio K
(ratio of the plug radius Rp at the sonic point to the nozzle lip radius
RN) is a unique function of the design flow Mach number. Therefore, at
high design pressure ratios, the corresponding values of K's are also
high. This, when applied to plug-nozzles to be operated at high pressure
ratios encountered in rocket engines, results in small annulus-widths (or
heights) of the throat of the plug-nozzle. Therefore, the assumption made
by Connors and Meyers that the sonic line at the inlet throat is straight,
is reasonably satisfied. The present aerocacoustic studies, however, are
aimed at the use of plug-nozzles at a lower range of design pressure
ratios such as those normally encountered in turbo-jets for supersonic jet
propulsion. This lower range of pressure ratio was not covered in the
earlier predictions by Connors and Meyers of the contours of isentropic
inlet-plug. At lower design pressure ratios éd' the annulus-radius-ratio

K of the plug-nozzle are smaller and consequently, the plug-nozzle throat-

-13-~



width would be comparatively larger. Therefore, the non-uniform flow at

the plug nozzle-throat would result in appreciable curvature of the sonic
line. Consequently, Connors and Meyer method which prescribed a straight
sonic line at the throat, would not predict the exact plug contour for an

isentropic plug- nozzle flow at low super-critical design pressure ratios.

Prediction of the Isentropic Plug Contour

The design parameters that must be determined for the start of the
MOC solution are: the geometrical annulus-radius-ratio K, the inner wall
(i.e., the plug) slope at the sonic line and the shape of the sonic line.
Consider the flow near the throat in an infinitesimal annuls of an

axisymmetric plug-nozzle (for nomenclature see Fig. 1l). The throat area

is given by,

o + 0
- 2_ n2 2
At T (R1 Rz) / cos ( > )

The geometrical condition of Mach number gradient at the throat in

the stream direction being zero,

da
—t_ 0 ives
aL r g
~ . sin aa
w, = sin I—-—;——I

where k = RZ/R1

The mean flow direction of the streamline in the infinitesimal

annulus is,

o = “ﬁ + “5
m 2
Also,
1
cCos Wy, =
k = 1l -_ 2
(Ae/At)
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where (Ae/At) is given by the area-Mach number relation for an isentropic
flow.

The preceding set of equations may be used for establishing an
iterative scheme, starting from the nozzle lip, to obtain the shape of
curved sonic line along with the values of the geometrical configuration
parameter K of the plug and slope of the plug at the sonic line. The

starting values of o, is given by,

aﬁ -0 =YV (Md)

where Md is the design Mach number. The iterative scheme is initiated by
guessing a value of k and the process is so rapidly convergent that the
points on the curved sonic line are obtained with ease.

Having obtained the sonic line shape, the geometrical annulus- radius-
ratio K and the initial slope of the plug at the sonic line Yy, the method-
of-characteristics (MOTC) solution, as described in references 31 and 32,
was used for obtaining the plug profile which is a bounding stream surface
of the plug-nozzle potential flow. The method consisted of treating the
flow in two domains (see sketch on the following page). The domain I is a
mixed region having both the left running and right running
characteristics and the bounding surface of this domain is straight being
adjacent to the uniform exit flow region. The domain II is a simple
region having only one type of characteristics. The lines of constant
characteristics, starting from the nozzle lip, were traced in fifteen
small intervals and the plug profile was generated in successive stages by
providing suitable local compression turnings at the surface to cancel the
incident expansion waves. It may be noted that a line of constant
characteristic is necessarily curved in an axisymmetric flow. A
combination of computational and graphical approach was used.

In the present study a plug-nozzle with a contoured plug of design
Mach number Md = 1.5 was used. This resulted in a specific annulus-
radius-ratio K = Rp/RN = (.43 and a convergent nozzle wall inclination
®s = 11.905° and the inner plug wall slope WY = 28.37°. For the same
design Mach number, a plug contour was predicted by an approximate method
and K and ¥ were respectively, 0.41 and 21° . For details see

Appendix II. The coordinates of the plug designed by the method of
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Straight Free Jet Boundary
Lip<ce, : S

IVL

Uniform Exit Flow

L -

Jet Axis (Axis of Symmetry)
w_ = o in Fig. L.

Table 1. Coordinates of the Contoured Plug (in mms)

X R X R
0.00 0.00 15.71 3.45
1.01 0.05 17.66 4,17
3.05 0.25 19.46 4.89
5.59 0.64 21.26 5.69
7.31 0.99 23.06 6.46
3.96 1.40 25.16 7.59

11.21 2.02 27.26 8.70
13.76 2.80 29.27 9.77

Design Mach Number Md = 1.50

Radius at the Nozzle Lip RN = 22.5 mm.

Radius of the Plug at the throat Rp = 9,77 mm.
(Annulus-Radius-Ratio) K = Rp/RN = 0.434

Width of the Plug-Nozzle throat w, = RN - Rp/cost(

VY + we
3 ) = 13.56 mm.

We = @y Inclination of the wall of the convergent nozzle
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characteristics and by the approximate method are tabulated in Table 1,
(p.16) and Table II.1l (p.127) respectively.

To circumvent the difficulties encountered in machining a stainless
steel contoured plug with an extremely sharp pointed termination, an
aluminum contoured plug was machined with a thickness of the pointed

termination of only 0.025 cm.

III.3 Selection of Plug-Nozzle Configurations with a Solid Short
Conical Plug.

One of the stated objectives of the aeroacoustic studies reported
here was to assess the effectiveness of an uncontoured short conical plug-
nozzle in suppressing the shock-associated noise radiated by an
underexpanded jet flow issuing from an 'equivalent' convergent (plugless)
nozzle.

The plug-nozzle with a contoured plug operated at its design pressure
ratio provides the base-line acoustic data for a shock-free plug-nozzle
supersonic jet flow. This is an ideal to be approached when the
objective is to achieve the suppresion of the shock-related noise
components of improperly expanded jet flows issuing from plug-nozzles.
Therefore, the shock-associated noise components of improperly expanded
jet flows issuing from a conical plug-nozzle can also be assessed by
comparison with the noise radiated by an isentropic shockless supersonic
jet flow issuing from an 'equivalent' contoured plug-nozzle at its design
pressure ratio.

In addition, the role of porosity of the plug surface in weakening
the repetitive shock structure in improperly-expanded conical
(uncontoured) plug-nozzle jet flows is to be assessed. The aim is to
weaken the repetitive shock structure of uncontoured conical plug-nozzle
flows such that the features of the improperly expanded jet flows of a
plug nozzle with a combination of porous and solid surface are nearly
similar to those of a contoured plug-nozzle at or around its design
pressure ratio.

Many shapes and geometrical configurations of the conical plugs with a
solid surface are possible. An uncontoured conical short plug-nozzle with
a throat area equal to that of a contoured plug-nozzle was selected. This

facilitates the simultaneous matching of both the pressure ratio and the
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mass flow rate for the conical and contoured plug-nozzle flows.
Furthermore, when the plug-nozzle configurations are operated without the
plug besides the matching of pressure ratio of the resulting convergent
nozzle with that of the plug-nozzle, the exit area (or the mass flow
rates) of the plug-nozzle and the convergent nozzle flows can be matched
by scaling down the exit area of the plugless convergent nozzle (for
additional remarks, see the discussion of the acoustic results in .
Section V.).

Keeping the annulus-radius-ratio K the same, the conical plug may

be chosen on the basis of any of the following additional considerations.

(i) The length of the short conical plug is exactly the same as that
of the contoured plug. For a given K, this fixes the semi- angle of the

conical plug.

(ii) The surface area of the conical plug is equal to that of the

contoured plug.

(iii) At the throat of the plug-nozzle, the conical plug surface has the

same slope as that of the isentropic contoured plug.

(iv) The geometry of the conical plug could be selected purposely to be
radically different from that of a contoured plug. For example, the plug
apex angle could be much larger than those obtained from conditions (i) to
(iii) or the conical plug could be much longer than the contoured plug.
The repetitive shock structure in the improperly expanded jet flows from
such conical plug-nozzles will be comparatively stronger than if the
geometry of the conical uncontoured plug were selected to be rather
similar to that of a contoured plug.

These aerocacoustic studies of plug-nozzle flows were directed at
using rather short plugs as center-bodies. Simple quasi-one-dimensional
estimations of the pressure distribution over the plug surface and the
thrust, and the role of the plug length in intercepting (either in part
or in-full) the incident expansion waves, suggested the choice of a solid
conical plug semi-angle which results in a surface area equal to that of

the contoured plug (option (ii) above). For this experimental study, the
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solid conical plug-nozzle so chosen has a annulus-ratio K = 0.43 and semi-
angle at the plug apex of 23.9°. The ratio of the plug-length from the
sonic point to the plug lip (Lmax) to the nozzle radius RN for the
contoured plug is 1.30 and for the uncontoured conical plug is 0.97.

When operated at the same pressure ratio as that of the contoured plug,
such a solid uncontoured conical plug-nozzle is expected to have the same
mass flow rate and nearly the same specific thrust with aerodynamic
performance close to that of the isentropic contoured plug-nozzle. For
additional details of the conical plug geometry, see Fig. 3. The
geometrical parameters of the various plug nozzle configurations are

summarized in Table 2.

III.4 Porous Conical Plug

The contoured plug-nozzle, the solid conical plug-nozzle and the
solid/porous plug- nozzles with plugs of different porosity, all have the
same annulus- radius-ratio K (or the throat area). Therefore at the same
pressure ratio, the mass flow rates are matched. A comparison of the
aeroacoustics of the various plug-nozzle flows is, therefore, possible
when these plug-nozzles are operated at the same pressure ratio.

The transonic wind-tunnel studies indicate preference for low porosity
at higher speeds if the weakening of the shock fronts from the aerodynamic
model incident on the tunnel wall was to be promoted. From the studies of
Spiegel et al [33], one may expect a porosity of 15% or lower to be
preferable for shock wave cancellation. However, the effects of flow
through perforations and the flow resistance introduced by the porosity of
the surface on the aerodynamic performance of the plug-nozzle need to be
assessed. The flow over perforated surface is known to be a generator of
unwanted tones, for values of the Strouhal number around 0.2 [34,35].
Thus, the geometry of the perforations (i.e. the diameter and the depth of
the perforation) and whether the porous hollow plug is vented to the
ambient atmosphere or not, would influence the gas dynamics of the porous
surface in supersonic jet flows and the possible generation of the

porosity-dependent acoustic radiation.
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With the aforementioned porosity considerations in mind, for the present
experiments, a non-vented porcus plug having a ten percent porosity 6, with
perforations open to the hollow body of the plug (the perforation diameter of 1
mm and the depth of 2 mm) was used. The perforations were uniformally
distributed along seven evenly spaced rings over the conical plug surface. The
degree of porosity is high enough for promoting either interaction between waves
of opposite polarity and/or wave cancellation, and low enough not to
significantly affect the thrust of a conical plug without perforations.

The relatively large ratio of the depth of the perforation to its
diameter (= 2), increases the damping to the flow in and out of the
perforation which diminishes the intensity of self-excitation as noted by
Tsui and Flandro [34]. An examination of the spark shadowgraphs recorded
during the preliminary studies indicated that strong reflected waves
originating from the middle-third of the solid conical plug, play a
relatively more significant role in the formation of the repetitive shock
structure in the plug nozzle jet flows. Therefore, to modify this shock
structure, a second plug having perforations (6 = 4%) only in the middle-
third of the plug was also studied. The two porous plug models are shown

in Fig. 3.

III.5 Role of Plug Hump

The location of the nozzle throat relative to the plug hump and the
radius of curvature of the plug-hump are known to be critical
considerations in the design of plug-nozzles [36]. For the contoured
plug-nozzle, in particular, the hump may lead to the expansion of the flow
around its curved portion just upstream of the geometrical throat. The
throat (the narrowest cross-section) of the plug-nozzle, therefore, must
always be located downstream of the point where the curved section at the
hump becomes tangent to the expansion section of the plug.

In the present study, the largest possible value of the radius of
curvature of the plug hump was selected such that, for the prescribed
outer wall profile, the minimum flow area occurred at the theoretical
location of the sonic line. Further, the approach to the supersonic
expansion of the plug was made straight (approximately 0.8 mm long),
smoothly joining the curved hump. This ensured the occurrence of the

actual throat downstream of the curved portion of the hump.
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The actual locations of the throat may deviate slightly from the
theoretically predicted location due to three dimensional effects and
flow inhomogeneity inherent in the actual flow. To attain shockless jet
flow from the contoured plug-nozzle at its design pressure ratio, a
slight axial adjustment in the plug location may be helpful to achieve
coincidence of the actual and the theoretical location of the sonic point
on the plug surface. Therefore, a provision was made in the plug holder
so that with proper fillers, the throat location could be moved backward
or forward up to 0.8 mm.

The geometrical specifications of the various model externally-

expanded plug-nozzles with pointed plug termination are tabulated below.

Table 2. Summary of Geometrical Parameters of

the Model Plug-Nozzle Configurations.

S.No. MODEL RNmm ag K vy wtmm Lmax/RN Lmaxwt
1. Convergent Nozzle 22.5 11.9° - - - - -
2. Contoured P.N. 22.5 11.9° 0.43 28.4° 13.56 1.30 2.16
3. Solid Conical P.N. 22.5 11.9° 0.43 23.9° 13.56 0.9 1.61
4. Porous Conical P.N. 22.5 11.9° 0.43 23.9° 13.56 0.97 1.6l

Porosity 10%
5. Porous Conical P.N. 22.5 11.9 0.43 23.9 13.56 0.97 1.61
(Porosity 4%)

RN Radius of the nozzle lip: Rp radius of the plug at the sonic
point
K

Annulus-Radius Ratio of Rp to RN

ug = 0!.e Inclination of the wall of the convergent nozzle:

W, width of the annular throat of the plug-nozzle
Inclination of the plug surface to the jet axis, at the sonic
point

Lmax Axial length of the plug from the sonic point to its tip
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IV. THE SCOPE OF THE EXPERIMENTAL DATA
The acoustic and optical data of the supersonic jet flows issuing
from the contoured plug nozzle, uncontoured conical plug-nozzles and a
combination solid/porous plug nozzles were recorded to explore their
comparative perforgance for suppression of shock-associated jet noise.
The range of pressure ratios at which these were studied and the extent

of the experimental data recorded, are tabulated below.

Jet Pressure Ratio §

Nozzle Configuration 2.0 2.5 3.0 3.6 4.0 4.5
a) Convergent Nozzle + t+ t+ t + +
b) Contoured Plug-Nozzle t t t t t t
c) Uncontoured Solid t t t + + t

Conical P-N

d) Porous Conical P-N * * t t * +
(G = 10%)

e) Porous Conical P-N * * t t * t
(0 = 4%)

The symbol +t indicates that the acoustic data were gathered at all
eight azimuthal angles, 15 degrees apart, from 6 = 15o to 120o (measured
with respect to the downstream axis of the jet flow. The symbol *

indicates that the acoustic data were gathered only at 6 = 90°
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The spark shadowgraphs and the acoustic data of the supersonic jet
flows issuing from each of these nozzle configurations operated at the
range of pressure ratios & = 2.0 to 4.5 were recorded. Since in the
present studies the theoretical design pressure ratio for the contoured
plug-nozzle is &d = 3.67, the range of pressure ratios. € covers the
off-design pressure ratio for the over-expanded (§ < &d) and for the
underexpanded (§ > §d) modes of operation. For the contoured plug

nozzle, shock-free flow was achieved at & = 3.60 (Mj = 1.49).

The 1/3 octave SPL's were recorded at azimuthal angles 0 = 15° , to
120o for the convergent nozzle flows (i.e. the plug-nozzle operated
without the plug) operated at & = 2.0 to 4.5 as well as for the contoured
plug-nozzle operated at the design pressure ratio § = éd and the off-
design pressure ratios. For the combination solid/porous conical plug
nozzles operated at § = 3.05, 3.6 and 4.5, the 1/3 octave spectral data
were also recorded at all eight O locations. However,
for § = 2.0, 2.5, 4.0 the acoustic data for the solid/porous plug-
nozzle were recorded only at 0 = 900. Since at higher angular
locations around 0 = 900, the shock-associated component of radiated
noise is dominant over the jet-mixing noise, for shock-associated noise
studies, limiting the recording of SPL's to only 0 = 90° for some of
these pressure ratios was considered to be adequate. Any shock-structure
modifications through the porosity-effects and the related shock
associated noise will be manifested more strongly through the reduction
of OASPL's at O around 90°.

In the preliminary stage of these investigations some acoustic data
and spark shadowgraphs of the corresponding jet flows of the contoured
plug designed by the approximate method were recorded (see Appendix II)
where the annulus-radius-ratio of both the solid conical plug and the
solid/porous conical plug K = 0.41. Some of the acoustic results along

with the optical records of the supersonic jet flows are reproduced in

Appendix II (for further details, see Reference 29).
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V. EXPERIMENTAL RESULTS AND DISCUSSION

All the plug-nozzle configurations used in these studies, as noted
earlier, are a combination of a basic convergent round nozzle and short
plug with pointed termination. For various plug-nozzle configurations,
only the plug is changed and different plugs have either solid or a
combination of solid/porous surfaces of different contours. For each of
the plug-nozzles, the annular radius ratio K is the same. The angle of
the converging wall (ag = ll.9°) of the basic convergent nozzle was
selected such that at the design flow Mach number (Md = 1.5) of the
contoured plug-nozzle, the free jet flow boundary is parallel to the
nozzle axis. The plug-nozzle is operated as a convergent nozzle by

removing the plug and its mounting assembly.

V.1l Noise Radiated by Underexpanded Jet Flow Issuing from Convergent
Nozzle.

The acoustic data gathered with the convergent nozzle operated at
various above-critical pressure ratios provide the baseline data for the
evaluation of the noise-suppression effectiveness of the various
'equivalent' model plug-nozzle flows.

Acoustic radiation at discrete frequencies is often observed from
underexpanded jet flows issuing from convergent nozzles. This is commonly
attributed to a feedback mechanism [1]. To develop a prediction model for
shock-associated noise of full scale engines based on acoustic data
acquired from model nozzles, the characteristics of the broadband shock
associated noise (without screech contamination) radiated by model jet
flows should be known. Hence, the generation of such discrete tones from
model underexpanded jet flows, need to be eliminated. This is often
achieved by providing protuberances or roughness just inside the nozzle
lip [9]. Such a physical modification of the nozzle lip is likely to
alter the flow and the shock-structure of the underexpanded jet, thereby
affecting the level of the shock-associated noise generation itself. In
the present investigation, the elimination of the screech tones was
achieved not by resorting to any physical modifications of the nozzle
exit, but by making the convergent-nozzle wall at the lip extremely thin
(only 0.05 cm). Furthermore, the fiberglass padding of the jet rig was

extended and terminated at the nozzle exit plane into a cylindrical layer
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of approximately 3/8 inch thickness.

For the operating pressure ratios and the exit-diameter of the
convergent nozzle used in these studies, the fundamental screech
frequency and its harmonics were calculated by using the relation
proposed by Tam, Seiner and Yu [37]). These are marked by vertical arrows
in Fig. 4 on a typical 1/3 octave SPL spectral records at 0 = 90° at
pressure ratios & = 4.0 and & = 4.5 of the convergent nozzle jet. The
spectral data do not reveal the presence of any very sharp spiked SPL
peaks (the usual characteristic of screech tones) in the spectra at or
around the calculated values of the fundamental screech frequency and its
harmonics. Therefore, the recorded 1/3 octave SPL spectra of the noise
radiated by the convergent nozzle jet flows at super-critical pressure
ratios are considered to be screech-free and as such the recorded
acoustic data are primarily a superposition of the turbulent mixing and

the shock-associated noise components.

Peak Frequency Variations

The variation of peak frequency with observer angle 6 , for the
underexpanded jet flow from the model convergent nozzle, operated at
€ = 3.60 is shown in Fig. 5. For clarity, the one-third octave SPL
spectra at various angles are plotted on a sliding scale. The broad band
but strongly humped spectra at higher angles shown in Fig. 5(a). are
typical of the broadband shock-associated noise radiated by underexpanded
jet flows from convergent round nozzles. At higher angles to the jet
axis, where shock associated noise is dominant, the peak frequency
decreases with the observer angle 0 indicating a Doppler-shift type of
phenomenon. Such characteristics of the spectra have been observed
before by Harper-Bourne and Fisher [8] and Tanna [38].

For & = 3.05, 3.6 and 4.5, St. numbers vs 0 are plotted in Fig.
Fig. 6. For each &£, the St. number is seen to vary broadly with
peaks and plateaus between approximately 0.2 to 1.2 approaching 0.4 at
higher ©'s. At each 0 < 45°  the St. number for different pressure
ratios & = 3.05 to 4.5 and, thus, different repetitive shock structure,
is nearly the same. The variations in the St. number at different above-
critical pressure ratios are most pronounced for the intermediate angles

45 < 0 < 75° . The experimentally observed peak frequencies at different
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0's for the above-critical pressure ratios E =2.0 to 4.5 are
tabulated in Table 3 as Strouhal number St = fp D/Vj where Vj is the
fully-expanded jet flow velocity and D is the exit diameter of the
convergent nozzle.

Far-Field Noise Intensity

Since the shock-associated noise is dominant at higher angles to the
jet axis, the acoustic intensity (or OASPL) at 0 = 90o is compared with
the shock associated noise for choked convergent circular nozzle jet flows
as predicted by Harper-Bourne and Fisher [8]. A plot of the OASPL's at © =90o
measured for the improperly-expanded jet flows from the model
convergent nozzle of the present study versus log10 B where the parameter,
B = Vﬁ%"i_f, is presented in Fig. 17. 1In the intermediate range of the
fully expanded flow Mach number 1.2 < Mj < 1.5, the agreement between the
experimental and the predicted OASPL's is excellent. For jet Mach number
less than 1.2, the agreement is poor. This behavior has also been noted
by Harper-Bourne and Fisher [8] and Tanna [38]. For flow Mach number Mj >
1.6, the experimentally observed shock-associated intensity levels are
lower than those predicted. This is attributed to the appearance of the
Mach reflection in the axisymmetric underexpanded jet flows and the mixed
supersonic and subsonic flow regimes which develop downstream of it. 1In
the present studies, the appearance of Mach disk in underexpanded jet
flows emanating from converging nozzle at E = 4.0 (Mj = 1.6) is quite
evident in the spark shadowgraphs (see Figs. 12 and 13). The observed
agreement between the experimentally observed and the analytically
predicted acoustic intensity for 1.2 < My < 1.5 confirms the reliability
and the validity of the acoustic data recorded in the present study of the
improperly- expanded jet flows.

Recently, the theoretical models for the predictions of shock-
associated from improperly expanded jet flows by Harper-Bourne and Fisher
(8), Tam and Tanna (19) and Seiner and Norum (30) have been incorporated
by Stone (40) in an empirical relation for the prediction of OASPL's
generated by supersonic jet flows issuing either from a circular
convergent nozzle operated at super-critical pressure ratios or from a
convergent-divergent nozzle operated at the off-design pressure ratios.

To account for the absence of shock-associated noise from fully-expanded
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(Re: 2 x 1074 pbar)

Octave SPL's dB

1/3
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0
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1
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30°
] l l |
90 1 !
0.2 0.5 1.0 2.0 5.0 10 20 50
Frequency - kHz
Fig. 5 Variation of Peak-frequency with Azimuthal Angle for Convergent

Nozzle Jet Flows at Pressure Ratio & = 3.6 (Mj
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C-D nozzle flows as well as the appearance of the Mach-Disk in improperly
expanded jet flows and the related levelling off of the shock-noise at
higher B? = (Mi - 1), the acoustic intensity level is taken to be
proportional to (Mj - Mj)/(l+(M§ - Mi)), instead of B! used by Harper-
Bourne and Fisher for underexpanded jet flows from convergent nozzles.
For the convergent nozzle, the design Mach number M; = 1 and the Stones

relation takes the following form,

Pa 2 aa 4
OASPL = 162 + 10 log {(pISA) . (aISA) }
2 2
(Mj - 1) Aj
+ 10 log I ] +10 log (=) +F - (6,- 0)
1+ M - 1? R?
where 0, is the Mach angle given by sin_1 (1/Mj). The function F,

accounts for the directivity of the radiated noise and
F =0, for 6 > 0
F=-0.75, for 0 < 0,

In Fig. 7, the typical OASPL's at different 0's for the convergent
nozzle operated at pressure ratio § = 4.5 (M, = 1.65), are compared with
those predicted by Stone's relation. For pressure ratios 3.0 < & < 4.5
(i.e. flow Mach numbers 1.3 < My < 1.7), and at higher angles to the jet
axis, there is good agreement between the experimental and the predicted
OASPL's. For lower supercritical pressure ratios (flow Mach numbers
My < 1.2), the agreement at higher angles is not as good. At lower
angles to the jet axis, the predicted intensity by Stone's relation
indicates a substantial departure from the experimental values. To
account for the fact that at lower angles, the turbulent mixing noise
component is dominant and, comparatively, the contributions of the shock-
associated noise component are less significant, Stone introduced a
correction term to what otherwise is a prediction scheme for shock-
associated noise. No physical basis for this empirical term is advanced.
According to the acoustic data gathered in the present study the Stone's
relation does not seem to predict well the acoustic intensity of the
underexpanded jet flows from convergent round nozzle at lower azimuthal

angles (0 < 450) to the jet axis.
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V.2. AEROACOUSTIC PERFORMANCE OF A CONTOURED PLUG-NOZZLE OPERATED
AT ITS DESIGN/OFF-DESIGN PRESSURE RATIOS.

V.2.1 sShockless Supersonic Jet Flows of Contoured Plug-Nozzle.

The spark shadowgraphs of the supersonic jet flows issuing from plug-
nozzles of different geometrical specifications operated at operating
pressure ratios & = 2.0, 2.5, 3.05, 3.6, 4.0, and 4.5 are presented in
Figures 8 to 13 respectively.

The shadowgraph of the contoured plug-nozzle jet flow at pressure
ratio & = 3.6 (Fig. 8b) shows that the supersonic jet flow in the plug-
region as well as farther downstream, is free from any repetitive shock
structure. This pressure ratio § = 3.6 (Mj = 1.49) is quite close to
the theoretical design pressure ratio &, = 3.67 (My = 1.50) of the
contoured plug. Moreover, the free jet flow boundary just downstream of
the nozzle lip is straight and parallel to the axis of the plug-nozzle,
indicating that the supersonic jet flow at & = 3.6 is fully-expanded.
Also for My = 1.49 (shockless flow condition), the area ratio A /A, as
measured from the shadowgraph of the fully expanded jet flow, agrees well
with that calculated from Area-Mach number relation for an isentropic
supersonic flow. Therefore, shockless (isentropic) supersonic jet flow
issuing from a contoured externally-expanded plug-nozzle is achieved at
pressure ratio & = 3.6 (M = 1.49). 1In such flows, the source and the
mechanism for the generation of the shock-associated noise component is
considered to be absent. Because of the very sharp pointed plug
termination, in the spark shadowgraphs of the fully-expanded plug-nozzle
flows there is hardly any visible wake. Also, in the shadowgraphs, the
boundary layer over the smooth polished contoured plug surface is
extremely thin. Therefore, the acoustic performance of such shockless
and virtually wake-less plug nozzle supersonic jet flows provides the
base-line noise data. These data are used for comparative assessment of
the effectiveness of plug nozzles with short conical plugs of different
configurations in the suppression of shock-related noise from improperly
expanded jet flows.

The shadowgraphs of the contoured plug-nozzle operated at off-design
(E<€4) pressure ratios in the overexpanded mode (Figs. 9 to 11) show the
presence of weak shock structures only in the plug region. The formation

of the shock cells further downstream of the plug tip is not clearly
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discernible.

Figures 12 and 13 show shadowgraphs of the contoured P-N
underexpanded (§ > §,) jet flows. The shock structures in the
underexpanded jet flows issuing from a contoured plug-nozzle are rather
weak as the oblique shock angles of these conical shocks are nearly equal
to the expected Mach angles calculated from the local flow Mach number
achieved by isentropic flow expansion. Therefore, the corresponding
repetitive oblique shock structure farther downstream is also expected to
be weak. (For further discussion on the nature of such shock structure

and its effects on the shock-associated noise, see Section V.2.5).
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Shl Bl Lo

Contoured Plug-Nozzle

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(sl) Shock related to reflections from
plug surface

(c) Lambda shock at jet flow boundary

(52) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface

Porous Conical Plug-Nozzle (o= 4%)

Fig.8 Shadowgraphs of Convergent Nozzle and Different Plug-Nozzle Flows
(£=3.6 : shock-free condition for the contoured plug-nozzle)
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Convergent Nozzle Solid Conical Plug-Nozzle

Contoured Plug-Nozzle

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(sl) Shock related to reflections from
plug surface

(c) Lambda shock at jet flow boundary

(52) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface Porous Conical Plug-Nozzle (o= 4%)

Shadowgraphs of Convergent Nozzie and Different Piug-Nozzie Fiows (£§=2.00)

mn
«
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Contoured Plug-Nozzle Porous Conical Plug-Nozzle (6=10%)

A

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(Sl) Shock related to reflections from
plug surface

(c) Lambda shock at jet flow boundary

(sz) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface

»

PorousACronicaI Plug-Nozzle (6=4%) )

Fig.10.Shadowgraphs of Convergent Nozzle and Different Plug-Nozzle Flows (§=2.5)
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Contoured Plug-Nozzle

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(Sl) Shock related to reflections from
plug surface

(c¢) Lambda shock at jet flow boundary

(52) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface

%

Porous Conical Plug-Nozzle (o0=4%)

Fig.11, Shadowgraphs of Convergent Nozzie and Different Piug-Nozzie Fiows (§=3.05)
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Contoured Plug-Nozzle Porous Conical Plug-Nozzle (6=10%)

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(sl) Shock related to reflections from
plug surface

(c) Lambda shock at jet flow boundary

(52) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface

533 iaded

Porous Conical Plug-Nozzle (6=4%)

Fig.12, Shadowgraphs of Convergent Nozzle and Different Plug-Nozzle Flows (§=4.0)
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Contoured Plug-Nozzle

Legend of Flow Features in shadowgraphs
(Figs. 8-13)

(a) Repetitive shock structure

(Sl) Shock related to reflections from
plug surface

(c) Lambda shock at jet flow boundary

(sz) Shock formed from the reflection
of expansions unintercepted by the
plug

(e) Compression wave front

(f) Mach Disc

(g) Slip surface

Porous Conical Plug-Nozzle (oc=4%)

l-lg.13.Shadowgraphs of Convergent Nozzle and Different Plug-Nozzle Flows (§=4.5)
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V.2.2 ACOUSTIC PERFORMANCE OF CONTOURED PLUG-NOZZLE JET FLOWS.

On the basis of a survey of the available literature, it was concluded
that the acoustic performance of a truly shockless supersonic jet flow
issuing from a plug-nozzle having a contoured plug with a pointed
termination has not been studied before. The noise radiated by a
shockless contoured plug nozzle jet flow is considered to be an ideal
baseline data for assessing the shock-noise reduction from improperly
expanded jet flows issuing from plug nozzles with either a solid or a
combination of solid/porous conical plugs. Therefore, to make the
comparative acoustic studies of plug nozzles of different contours and
configurations possible, extensive acoustic spectral data were gathered
for the externally-expanded contoured plug nozzle at its design as well as
at a wide range of off-design pressure ratios. Moreover, the
experimentally observed acoustic characteristics of such contoured plug-
nozzle jet flows may prove to be helpful in future theoretical formulation
of noise-generation mechanisms of exhaust flows from an important class of
nozzles for propulsion. Furthermore, these noise data set a standard for
optimization of the shock-associated noise suppression using plug-nozzles
of practical geometries.

The 1/3 octave SPL spectra were recorded for supersonic jet flows
issuing from an externally-expanded plug nozzle with a contoured plug
having a pointed termination operated at pressure ratio € = 3.60
(shockless flow) as well as at the off-design pressure ratios (§ = 2.0 to
4.5) at azimuthal angles 15° £ @ < 120°. Both the corrected and the
uncorrected acoustic data are tabulated in Appendices III and IV,
respectively.

The dominant noise generating mechanism for fully-expanded (shock-
less) Jjet flows at the design pressure ratio is due to turbulent
mixing and it is only at the off-design conditions that a combination
of shock-associated and turbulent mixing noise is present. For
typical 1/3 octave SPL data recorded at O = 90° for underexpanded
contoured plug-nozzle at pressure ratios & = 4.0 and 4.5, see Fig. 14.

In the test-range of pressure ratios and angular locations, there was no
evidence of sudden sharp peaks in the one-third octave SPL spectral

records, indicating the absence of screech tones.
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The variations of peak frequencies with angular location 0 at the
pressure ratio & = 3.6 for shockless flow and at the off-design pressure
ratios & = 3.05 and 4.5 are shown, respectively, in Figs. 15a to c.

For clarity, at each pressure ratio the one-third octave SPL spectra at
different angles © are plotted on a sliding scale. The corresponding
Strouhal number St. vs 0 where the annulus width w, is taken as the
characteristic length, are plotted in Fig. 16. The St. numbers for
pressure ratio & = 2.0 to 4.5 at angular locations 15° < 0 < 120° are
listed in Table 4.

For the contoured plug-nozzle operated at pressure ratio E =3.6
(shockless flow), the peak frequency (Fig. 15a) or the Strouhal number
(Fig. 16) does not indicate any significant change at higher angles

75° < @ < 120° with respect to the downstream flow axis. The peak
frequency f, at the higher angles is noted to be around 10 kHz; the St.
numbers is 0.05 (at @ = 15°) and 0.3 (at 6 = 120°) with peak

St. number = 0.5 at 0 = 60°.

The variation of peak frequency with 0 for the contoured plug-
nozzle at off-design pressure ratio & = 4.5 (underexpanded mode) and
£ = 3.05 (overexpanded mode) are nearly the same between O = 15° to 120°
except for a second peak at 0 = 105° for § = 3.05 (Fig. 16).

For & = 4.5, the peak frequency or St. number decreases to a constant
value = 0.2 at O between 75° to 120°. The peak St. number is 0.40
between 0 = 45° to 60°.

The comparison of peak frequency or St. number variations with 0 of
an underexpanded convergent nozzle flow and the contoured plug-nozzle
flows at the same pressure ratio shows that the ratio of the peak
frequencies of the contoured P-N to that of the plugless convergent
nozzle studied here is approximately 2, suggesting that most likely it is
the effect of the characteristic length (annulus throat width w, =
13.56mm) of the plug-nozzle of annulus-radius ratio K = (.43 being
smaller than the exit radius (22.5mm) of the convergent nozzle. For

additional specifications of nozzles see Table 2 on p. 22
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V.2.3 NOISE SUPPRESSION EFFECTIVENESS OF A CONTOURED PLUG-NOZZLE

To assess the effectiveness of a contoured plug-nozzle as a
supersonic jet noise suppressor, its acoustic performance is compared
with that of an 'equivalent' convergent nozzle. The convergent nozzle
and the contoured plug-nozzle are operéted at the same pressure ratio.
Since the contoured plug-nozzle has annulus-radius-ratio K = Rp/RN
K = R,/Ry = 0.43, the ratio of the throat area Ae of the plugless
convergent nozzle to the annular throat area Ap of the plug-nozzle
= 1.33. To obtain an 'equivalent' convergent nozzle, throat area of the
convergent nozzle is scaled down to the annular throat area of the plug-
nozzle. Therefore, the intensity levels or OASPL's of the plugless
convergent nozzle data need to be reduced by 10 log10 (Ae/Ap). For the
present case this correction is only 0.68 dB. These ‘equivalent' nozzle
corrections have been applied to the comparative acoustic results
presented in this report. For plug-nozzles with low values of annulus-
radius-ratio K, the OASPL correction due to the scaling down of the
throat area of the convergent nozzle for 'equivalence' with plug-nozzles
is rather small. However, if the aeroacoustics of the plug-nozzles with
higher annulus-radius-ratio K = Rp/RN (i.e. plug-nozzles designed for
higher M, 's) were to be studied, the magnitude of this correction would
be more noticeable.

The variations of OASPL at 6 = 90° for the jet flows issuing from
the contoured plug-nozzle and an equivalent convergent nozzle operated at
a range of pressure ratios & = 2.0 to 4.5 My = 1.05 to 1.67) is
plotted as a function of the logarithmic shock strength parameter log10 B
where B = \[§§—:—I and Mj is the fully-expanded flow Mach number
(Fig.17). Substantial noise reductions are obtained by the use of the
contoured plug nozzle with a maximum reduction of about 10 dB around
My = 1.5 (the shockless jet flow condition). The OASPL vs log10 B
variation for the convergent nozzle flows follows the Harper-Bourne and
Fisher B‘—scaling. For the contoured plug-nozzle operated in the
overexpanded range of pressure ratios (§ < &d PoMy < My ), OASPL varies
as B'"® ; over the underexpanded range (£ > s i My > M, ), it varies as
B2'7. The OASPL over the entire range of Mj 's varies approximately as
BZ. Therefore, the OASPL's for the contoured plug-nozzle increase

comparatively less steeply than that for the convergent nozzle. Such
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comparative variations of OASPL vs log B for the contoured plug nozzle
and the convergent nozzle jet flows show that when operated at the same
pressure ratio the strength of the shock structure in the jet flows from
the over- and underexpanded modes of operation of the contoured plug
nozzle is weaker than in the underexpanded jet flows from an equivalent
convergent nozzle. Consequently, the shock-associated noise component
from the contoured plug-nozzle flows is also comparatively weak.

At higher angles to the jet axis, noise intensity vs My for a
contoured C-D nozzle operated at a range of pressure ratios in the over-
expanded modes through the fully-expanded to the underexpanded modes,
shows a pronounced "bucket" (i.e. the OASPL rapidly falls to a minimum at
the design Mach number and then rapidly rises for higher pressure ratios
[19]. However, when OASPL vs. Mj is plotted for a contoured plug-nozzle,
operated at a range of pressure ratios, this pronounced characteristic
"bucket" variation in OASPL vs. Mj , observed for the C-D nozzle, is not
noticeable for the contoured plug nozzle (Fig. 18(a)). The OASPL
increases with the increasing Mj from over-, through fully-, to

underexpanded mode of operation. Moreover, for My >> M; and for My << M,

p]
the OASPL's from C-D nozzle Jjet noise intensities are observed to approach
those of the equivalent convergent nozzle. However, for the contoured
plug-nozzle jet flows, the noise intensities are considerably lower than
those of the underexpanded jet flows from the equivalent convergent nozzle
in almost the entire range of pressure ratios (or M;'s) from the highly
overexpanded through to the highly underexpanded mode of operation

(Fig. 18(a)).

The OASPL's at 8 = 90° for the contoured plug nozzle operated over a
range of pressure ratios (§ = 2.0 to 4.5 or M, = 1.05 to 1.67) were also
plctted against the Tam and Tanna scaling parameter (Mi - Mg) for the
intensity of the shock associated noise from a contoured C-D nozzle where
the parameter Bx = \/ﬁg_:_ﬁg . The OASPL varies as B2°° in the
overexpanded mode of operation of the contoured plug nozzle
£ < 3.6 (or My < 1.49), and in the underexpanded mode M, > 1.49 as Bi
variation for the shock-associated noise intensity for the C-D nozzle

flows [19].
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The observed differences in the variation of the combined intensity of
the components of the mixing noise and shock-associated noise from a
contoured C-D nozzle and a contoured plug-nozzle as a function of the
fully- expanded flow Mach number (or the pressure ratio &), may be
explained with reference to the differences in the development of the
shock structure in an off-design overexpanded mode of operation of the
contoured plug nozzle and the contoured C-D nozzle. When the above
critical pressure ratios for the contoured C-D nozzle are low, such that a
normal shock front is present at the nozzle exit, the OASPL are relatively
high approaching those of an underexpanded flow from an equivalent
convergent nozzle operated at the same pressure ratio. As the pressure
ratio is increased (still attaining the design flow Mach number at the C-D
nozzle exit), the exit pressure is still lower than the ambient pressure
but the difference in the exit flow pressure and the back pressure
decreases, requiring the formation of an oblique shock structure in the
jet flow to meet the pressure condition at the free jet flow boundary.
The strength of the oblique shock progressively decreases as the pressure
ratio is increased. The shock structure disappears at the design pressure
ratio. This results in the observed minimum in the OASPL vs. M; plot
(Fig. 18(a)). When the pressure ratio or the fully-expanded jet flow Mach
number is further increased, the oblique shock structure of a
progressively increasing strength reappears in the underexpanded jet flow
and the OASPL increases [19]. However, in the over-expanded mode of the
C-D nozzle, to raise the exit flow pressure to the back pressure, the
oblique shock fronts at the nozzle lip are formed abruptly. But for the
off-design pressure ratio of the overexpanded contoured plug My < My),
the jet flow expands through the centered expansion fan at the lip of the
convergent nozzle. The expansion fan incident on the contoured plug
surface is cancelled. The oblique shocks may be formed by the coalescence
of the compression wave fronts originating from only part of the plug
surface where the local flow Mach number is lower than the design Mach
number. Moreover, the coalescence of the compression fronts into possible
oblique shocks is spatially spread out (Fig. 32(a)). This process of
oblique shock formation results in comparatively weak oblique shocks.
Therefore, the shock-related component of the OASPL from the overexpanded

mode of operation of the contoured plug-nozzle does not vary as steeply
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with My (or the pressure ratio) as it does for jet flows from an
overexpanded contoured C-D nozzle.

The OASPL vs 0O variations for the contoured P-N at the pressure
ratio at which shockless flow is achieved (§ = 3.6) and for the
'equivalent' convergent nozzle operated at the same pressure ratio are
compared in Fig. 19.

The difference between the OASPL's of the contoured plug-nozzle and
the equivalent convergent nozzle operated at & = 3.6 at various 0's are
plotted in Fig. 20. The use of a contoured P-N of design Mach number 1.5
results in significant noise reductions in OASPL (of the order of 8 dB)
when compared with those of an 'equivalent' convergent nozzle. The noise
suppression is noted both at the lower angles to the jet axis where
turbulent mixing noise predominates as well as at the higher angles to
the jet axis, where the shock-associated noise is dominant. Tam and
Tanna [19] have reported a reduction of up to 9 dB in the OASPL at 0 = 9(Q°
for a C-D nozzle of design Mach number = 1.67 as compared to that of an
'equivalent' convergent nozzle (Fig. 20). For a C-D nozzle of design
Mach number of 1.44 Yamamoto et al. [41] showed at higher angles a noise
suppression of about 5 dB over their ‘equivalent' convergent nozzle. In
these experiments by Yamamoto, the comparatively lower levels of
reductions in OASPL's may be due either to the lower design Mach number
of the C-D nozzle (M; = 1.44) and/or the jet flow may not have been
entirely free of the shock structure.

The variations of OASPL's either at 6 = 90° or at 6 = 120° at a
range of pressure ratios & of the contoured P-N and the equivalent
convergent nozzle are very similar (Fig.2l). Therefore, any deductions
about the shock-associated noise based on the acoustic data recorded

either at 6 = 90° or 6 = 120° are equally viable.
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V.2.4 ADDITIONAL COMPARATIVE ACOUSTIC RESULTS

The one-third octave SPL's of the contoured plug-nozzle for the shock-
less flow condition, i.e., at pressure ratio & = 3.60 recorded at 0 = 90°
are compared with the corresponding SPL's of the convergent nozzle (Fig.
22) . The hump in the SPL spectra around 15 kHz for the contoured P-N is
noted to be comparatively broader and lower than that for the convergent
nozzle; the acoustic spectra of the convergent nozzle exhibits relatively
a sharp hump around 7 kHz. The SPL's in the entire range of 1/3 octave
band-center frequencies of the contoured P-N are significantly lower than
those of the model convergent nozzle. The contoured plug-nozzle jet flow
at & = 3.6 is shockless (Fig. 8). Therefore the observed reductions in
SPL's at 0 = 90° as compared to those from the underexpanded jet flow from
a convergent nozzle also operated at & = 3.6 are by and large attributable
to the absence of the shock-associated noise from the shock-free flows of
the contoured plug-nozzle. In Fig. 23, the comparison of the PWL's vs
frequency of jet flows from the contoured plug-nozzle and the convergent
nozzle at pressure ratio & = 3.6, gives similar results.

Variations of the OASPL's with 6 for the contoured plug-nozzle jet
flows are shown in Fig. 24 for three pressure ratios, & = 3.05 (typical
of the overexpanded mode); § = 3.6 (shockless flow), and & = 4.5
(typical of the underexpanded mode). For each of the fixed pressure
ratios, the OASPL's of the contoured plug-nozzle are nearly constant at
the observer angle 60° < 6 < 120° and the OASPL's increases with the
increasing pressure ratio from its slightly overexpanded (£ = 3.05)
through fully-expanded mode (§ = 3.6) and the underexpanded mode
(€ = 4.5).

The one-third octave SPL spectra, one-third octave PWL spectra and
directivity of the OASPL for the contoured P-N at & = 3.0 (the over-
expanded mode) are compared with those of the convergent nozzle in
Figs. 25, 26, and 27, respectively. Similar comparisons of the acoustic
performance of the contoured P-N at & = 4.5 (underexpanded mode) are
presented in Figs. 28, 29, and 30.

In Fig. 31, the variations of OASPL's at O = 90° for a range of
pressure ratio & of the contoured P-N and the equivalent convergent
nozzle are compared. These acoustic plots clearly show that for a range

of off-design supercritical pressure ratios, the improperly expanded jet
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flows issuing from an externally-expanded contoured plug-nozzle with a
pointed termination radiate lower OASPL's as compared to the 'equivalent'
convergent nozzle operated at the same pressure ratio. For calculating
OASPL at all 0's from the corrected SPL data, the throat area of the
convergent nozzle is scaled down to the throat area of the plug-nozzles.
Comparatively, the reductions in the OASPL's at the off-design pressure
ratios higher than the design pressure ratio are found to be somewhat

less but are still significant (about 4 dB, Fig. 29).
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V.2.5 Shock-Noise Reduction Mechanism of Contoured Plug-Nozzle Jet
Flows.

The spark shadowgraphs of the jet flows presented in Figs. 8 to 13 for
the contoured plug-nozzle when compared with those of the underexpanded
jet flows from a convergent (plugless) nozzle operated at the same
pressure ratio, show significant modifications of the shock structure. At
the design pressure ratio & = 3.6, the contoured plug nozzle is free of
shock structure (Fig. 8). At the same pressure ratio, repetitive shock
structure is present in the underexpanded convergent nozzle jet flow. The
strength of the shock cells increases with increase in the pressure ratio
£ or M; . At higher pressure ratios, the Mach disk appears in the
convergent-nozzle jet flow, with the attendant mixed subsonic and
supersonic flow regions downstream (Figs. 12 and 13).

In a contoured P-N jet flows at supercritical pressure ratios, the
expansion waves centered at the nozzle-lip are intercepted and cancelled
by the contoured surface of the plug. At the design pressure ratio, the
contoured P-N jet flow at the nozzle-exit is uniform, axial and shockless
(see Figs. 1 and 8). Therefore, the experimentally observed reductions
in SPL, PWL and OASPL for the contoured plug nozzle at its design
pressure ratio are primarily achieved by plug-induced elimination of the
shock structure in the underexpanded jet flows of the basic convergent
nozzle.

If the contoured P-N is operated at less than the design pressure
ratio (i.e. at My < M; in the overexpanded mode), all the expansion waves
between the leading and tail wave fronts of the expansion fan emanating
from the nozzle lip are cancelled. However, the compression-turning of
the supersonic flow by the contoured pPlug surface downstream of the
location where the tail Mach front of the expansion fan is incident on the
plug, generates a set of compression waves (see illustration in Fig. 32).
Depending upon the degree of the overexpansion of the contoured plug, these
compression waves may or may not coalesce into a shock in the plug
region. For overexpanded plug-nozzle, € = 3.05, such coalescence of
compression fronts does not take place in the region of the plug (Fig. 11).
compression wave-fronts reflect as expansions from the free jet boundary -

which in turn reflect as compressions from the opposite jet boundary.

These reflected-compressions may lead to the formation of a conical
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oblique shock in the plug-nozzle jet flow. Further reflections to meet
the constant pressure condition at the jet flow boundary result in weak
repetitive shock cells. Such oblique shock-structure formed by the
successive reflections of the wave fronts originating from only part of
the plug surface, are weaker than the oblique shocks in the underexpanded
jet flow from a convergent nozzle operated at the same pressure ratio. If
the super-critical pressure ratio for the overexpanded mode of operation
is lowered, the compression waves generated by the compression-turn of the
contoured-plug surface downstream of (and relatively close to) the nozzle
throat, lead to the formation of multiple shocks in the plug region. This
is well demonstrated in the spark shadowgraphs of the contoured P-N jet-
flows in Figs. 9 and 10, and is illustrated in flow sketch in Fig. 32 .
These multiple shocks in the plug region are rather weak and there is no
evidence of the repetitive shock cells downstream of the plug apex.
Therefore, at these off-design low pressure ratios, the relative
significance of shock associated noise generation would be reduced.
Hence, in such weakly overexpanded contoured plug-nozzle jets the shock
associated noise component even at higher 0's, is not dominant and the
turbulence mixing noise component plays relatively a more important role.
The noise intensity (OASPL's) of the weakly overexpanded jet flows from
the contoured P-N nozzle increases as the operating pressure ratios is
increased approaching the design pressure ratio where the jet flow is
shock-free. It is in this range of pressure ratios that the plug nozzle
has a clear aerodynamic advantage over an equivalent contoured C-D nozzle
which at such low pressure ratios (§ < §,) develops shock-structure within
the nozzle, resulting in shock- related noise and greater loss of thrust.
In the underexpanded mode of operation of the contoured plug nozzle
(€ > E4), the tail expansion wave corresponding to § = &, (the design Mach
number M;) is incident at the plug tip. In an underexpanded contoured P-N
jet (My > M;), the plug surface does not quench all the incident expansion
wave fronts from the nozzle lip. The expansion Mach fronts with the local
flow Mach number My > My, and Mach angles Hy < Hy , are not interceped
by the plug surface (Fig. 33). The escaped expansion wave fronts reflect
from the free jet boundary on opposite side as compression fronts and may
coalesce to form weak repetitive shock in the flow farther downstream of

the plug apex. These repetitive shock- cells are more likely to decay
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faster than those in an underexpanded jet flow issuing from an
‘equivalent' convergent nozzle and the underexpanded contoured P-N jet
flow, therefore, is likely to have a fewer cycles of the repetitive weak
shock cells. Since it is the strength, the number of shock cells, and
their spacings and the interaction of the flow fluctuations convected
through the shock-structure in the jet flows which contribute to the
intensity of the shock-associated noise, one may conclude that the shock
associated noise generation would be less significant in underexpanded jet
flows issuing from a contoured plug- nozzle operated at off-design
pressure ratios (§ > £,) than is the case for underexpanded jet flows
issuing from an ‘equivalent' convergent nozzle operated at the same
pressure ratio. These deductions are supported by the comparative
assessment of the shock related noise components at higher observer angles
by the contoured plug nozzle and the basic convergent (plugless) nozzle

operated at a range of pressure ratios (see Figs. 15-31).

V.3 AEROACOUSTICS OF CONICAL PLUG-NOZZLE JET FLOWS

The model conical plug-nozzle was designed to have the same annulus-
radius ratio K = Rp/RN + the same annular throat area and a conical plug
of the same surface area as that of the contoured plug. Therefore, the
the length of the conical plug was even shorter than that of the contoured
plug. For other geometrical specifications of the model conical plug-
nozzles see Table 2, p.22 . When operated at the same pressure ratio, the
mass flow rate for the conical and the contoured plug-nozzles is the same.
For a discussion of the various options considered for the selection of
the short conical plug, see Section III. 3. The extent of the accumulated
one-third octave sound pressure level data for the conical plug-nozzle is
tabulated on p.23

Figure 34, shows some typical records of the one-third octave SPL
spectra recorded at 6 = 90° for the conical P-N operated in the
underexpanded mode at the two highest supercritical pressure ratios
€ = 4.0 and 4.5 used in the present studies. Since there are no sudden
and sharp peaks in the SPL spectra at either of these pressure ratios,

it is concluded that the screech noise component is absent.

The variation of the peak frequency with the azimuthal angle 6 for
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the conical P-N at pressure ratio § = 3.6 is shown in Figs. 35. For
clarity, the corrected one-third octave SPL spectra at various observer
angles have been plotted on a sliding scale. For the contoured and the
conical plug-nozzles operated at the same pressure ratio £ = 3.6, the
peak frequency fp = 10 kHz is nearly the same. The Strouhal

number St. = £ w /vy vs 0, for & = 3.05, 3.6 and 4.5, are plotted in
Fig. 36. At each &, the Strouhal number varies in steps from low values
= .06 at O = 15° , peaks at O = 45° to Strouhal number = 0.4 and for

§
g

3.60 stays nearly constant between 45 < 8 < 90°; varies in steps for

3.05 and 4.5 approaching = 0.2 at 6 = 120° .
The comparison of the variation of the Strouhal number vs. © at the
same pressure ratio & = 3.6 (shockless flow) of a contoured plug (Fig.
16) with that of a conical plug (Fig. 36), shows similar peaks and
plateaus. 1In both cases, at 0 < 30° for each of the three pressure
ratios, the Strouhal number = 0.05. At E = 3.6, its peak value = 0.5 at
@ = 60° for the contoured plug and = 0.4 at O = 45° for the conical
plug. The St. number for the conical plug operated at different super-
critical pressure ratios also shows peaks and plateaus similar to those
for the contoured plug at & = 3.6, the St. number = 0.4 between
6 = 45° to 90° . At § = 4.5, St. number exhibits two plateaus; the first
St. = 0.3) between 0 = 60° to 75° and another (St = 0.16) at 0 = 90° to
120° (Fig. 36). It is noteworthy that St. number vs. 0 variations of the
conical plug nozzle at different above-critical pressure ratios are
nearly similar to those of a contoured plug nozzle when operated at the
same pressure ratios (Fig. 16). This similarity in the acoustic behavior
stems from the fact that some of the geometrical features of the short
contoured and uncontoured plugs are rather similar and, therefore, the
nature of the jet flows from each of the plug-nozzles, when operated at

the same pressure ratio, is also not radically different.
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V.3.1 Noise Suppression Effectiveness

The 1/3 octave SPL's records for the conical P-N at § = 90° for the
three typical pressure ratios (§ = 3.6, 3.05 and 4.5) are compared with
those of the contoured P-N and the convergent nozzle in Figs. 2, 25,
and 28, respectively. The OASPL directivity comparisons at various angles
for supersonic jet flows issuing from these three 'equivalent' nozzles
are presented for £ = 3.6 (the pressure ratio at which the contoured plug-
nozzle flow is shockless) in Figure 27, and for underexpanded flows at
E = 4.5 in Figure 30. The power level spectra of the jet flows from these
nozzles are compared for § = 3.6, in Figure 23, for £ = 3.05 in Figure 26,
and for & = 4.5 in Figure 29.

The directivity (OASPL vs 0) and the power spectra (PWL vs f) plots
at the three typical pressure ratios & = 3.05, 3.6 and 4.5 clearly
demonstrate that at all angles to the jet axis and for the entire
frequency range over which the acoustic data are collected, the noise
levels from the uncontoured conical P-N jet flows are about 2 to 4 dB
higher than those of the contoured plug-nozzle jet flows. However, the
comparison of OASPL's vs O of the equivalent convergent nozzle and the
plug-nozzle (in Figs. 23, 26 and 29) shows that by the use of even an
uncontoured conical plug as a centerbody in the plug nozzle, the noise
reductions of about 6-8 dB are achieved at all 0's. The plug-nozzle with
a short conical pointed plug as the centerbody, therefore, effectively
suppresses not only the shock-associated noise component (dominant at the
higher angles to the jet axis) but also the turbulent mixing noise, the
component of the noise dominant at lower angles to the jet axis.

The acoustic data gathered for improperly expanded plug-nozzle flows
are also analysed for comparison with the noise intensifies predicted by
relations proposed by Stone [40]. The shock-associated noise generated
from the premerged flow region in the vicinity of the plug and the shock-
associated noise generated from flows downstream of the plug are
considered separately. For single stream plug-nozzle flows, the OASPL

components for each flow region are represented as follows.
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From pre-merged flow region:

2 4

Pa a, A,

1. OASPL_ = 159 + 10 log + 10 log —
P (Pisn) (aISA) R2

(M2 _ 1)2

3
1+ (M§ - 1)?

+ 10 log (1-K) + 10 log

+F . (6, -0)

From Downstream Flow Region:

P, % , a ! M2 - M2 )
2 ( 2 ] + 10 log ] - d'g -
1+ o - M)
D

2. OASPL, = 159 + 10 log (PisA —

Ay
+F . (0 -6) +10 log
m RZ

where F (6, - 0)

]
o
-

for 6 > 0,

F (6, - 0) - 0.75, for 6 < 0,
M,, is the design Mach number if a pointed plug is used and is 1.0
if truncated plug is used.

The experimental OASPL's vs 0 at three typical pressure ratios
£ = 3.05, 3.6 and 4.5 of the conical plug nozzle are compared with the
OASPL's predicted by Stone's scheme, in Figs. 37 to 39, respectively. The
experimental and predicted OASPL's at 6 = 90° are compared at a range of
fully-expanded flow Mach Number M, in Fig. 40. At My > 1.5 the agreement
between the experimental and predicted OASPL's is within 3 dB's. At
higher angles to the jet flow axis, at all pressure ratios, Stone's
relation overpredicts OASPL's by 2 to 5 dB. Some of the likely reasons
for the observed differences in the predicted and the experimental
OASPL's are outlined below.

The empirical relations by Stone were devised particularly to predict
shock associated-noise from plug-nozzle flows. Therefore, poor prediction
of OASPL at lower angles to the jet axis (Figs. 37-39), where mixing noise
dominates, is understandable. Moreover, it seems that Stone's empirical

scheme was based only on the noise-data for the plug- nozzle flows
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accumulated by Yamamoto et al. [41]). The annulus-radius- ratio K of this
plug nozzle was 0.85. The plugs were long with the ratio of the plug
length L, ,, to the radius at the nozzle lip Ry of 2.4, and the conical
plug had bluff termination. 1In the present model conical plug- nozzle
configurations, K is only 0.43; the ratio L,,,/Ry is 0.97 and the plug tip
is pointed. The recompression shock from the wake flow of any bluff
(truncated) plug-nozzle operated at super critical presence ratios would
result in a repetitive shock structure [27]. Because of the different
configurational factors K, plug length L and plug termination, even at the
same super-critical pressure ratio, the shock structure in the respective
jet flows from these two different plug-nozzle configurations is bound to

be quite different.

Influence of the Annulus-Radius Ratio K and the Plug Length L.

An examination of the Stone's relation for predicting the OASPL's for
plug-nozzle flows shows that at the same My , an increase in the annulus-
radius-ratio K results in a decrease in OASPL. 1In the design of plug
contours for shockless flow, the parameter K and the design Mach number M,
are uniquely related (See Section III.2). Higher the design flow Mach
number, larger the value of K is. Moreover, Stone's relations predict the
same noise levels for plugs of the same K, but of different lengths. This

assumption of non-dependence on maximum length I cannot be defended

max
from the gasdynamical considerations. For example, consider a short plug
and a much longer plug both having the same K. Both are operated at a
pressure ratio for which the long plug just intercepts all the expansion
waves emanating from the nozzle lip and for the short plug, part of the
wave fronts of the expansion fan are not intercepted. In such conditions,
the jet flow of the long P-N will have reflected wave fronts from the
surface and form only one family of repetitive shock cells whereas the
short P-N jet will have two different families of repetitive shock cells,
one due to reflections at the plug surface of the expansion waves (see
shock labelled s, in Figs. 12 and 51(a)) and the other due to part of the
expansion waves from the nozzle lip escaping interception by the plug (see
shock labelled (s2 in Figs. 12 and 50(a)). Hence, the gasdynamical
features of the plug-nozzle jet flows with a short plug and a long plug

even with the same K factor and operated at the same pressure ratio, are
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different. Therefore, the resulting shock-associated noise-component for

such two plug-nozzle configurations would also be different.

Influence of the Plug Termination

If the plug termination is bluff or truncated, the base wake-flow
results. Consequently, as noted earlier, additional shock fronts
originate from the compressive turn of the boundary streamline of the
wake flow [27]. Moreover, because of additioﬁal flow expansions around
the shoulder of the truncated plug, the local flow Mach numbers may also
increase, thus resulting in stronger recompression shocks. This
additional family of repetitive shock structure ih such plug-nozzle flows
interact with the highly vortical, mixing layer of the wake flow and
generate additional shock-associated noise components from truncated-plug
flows. Such would not be the case for a pointed plug of the type used in
the present investigation. The acoustic data gathered by Yamamoto et al.
[41] using a plug-nozzle with a centerbody (plug) of bluff termination
would result in additional complexities in the shock structure of the jet
flows associated with wake formation. Stone's choice of the parameter

M = 1 to account for truncation effect, does not seem to have either

d,p
an obvious experimental or a physical gasdynamical basis.

The acoustic performance of supersonic plug-nozzle flows reported
here is based on the acoustic data gathered using a plug-nozzle with a
short conical plug as centerbody of a low annulus-radius-ratio
K = Rp/RN , a small L/Ry and a pointed plug-termination. The geometry of
the conical plug was selected to be rather similar to a contoured plug.
As such, the wake flow at the plug tip is practically absent (Figs. 8-13)
and the shock structure at the off-design pressure ratios is
comparatively weak. Stone's scheme was developed to fit the acoustic
data from plug-nozzle flows which are likely to have stronger shock
structure either because the plug was truncated or had a bluff
termination. This may be the underlying reason that for the present
study of the model solid conical plug, the overall sound pressure levels

are lower than those predicted by Stone (Fig. 40).
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V.3.2 Noise Generation Mechanism of the Conical Plug-Nozzle Flows.

The shock-structure in the jet flows from plug nozzles with a short
uncontoured conical plug as its centerbody is noted to be qualitatively
different from those in the contoured plug-nozzle flows at off-design
pressure ratios (see Figs. 8-13). The conical plug is shorter than the
contoured plug. At higher than the design pressure ratios, the conical
plug-nozzle flow field has two families of repetitive cellular shock-
structures; one family originating due to the reflections of incident
expansion waves as expansions from the solid plug-surface (see shock
front labelled (31) in Figs. 12 and 56(a), and the second family of shock
structure originating because the expansion waves from the nozzle lip are
not intercepted completely by the conical plug and the escaped expansion
fronts reflect as compressions from the opposite jet flow boundary (see
shock front labelled (s2 in Figs. 12 and 56(a)). In an ideal contoured
plug-nozzle flow all the expansion waves pertaining to the pressure
ratios upto the design pressure ratio, incident on the plug-surface are
cancelled and as such in the underexpanded mode of operation (§ > &),
one would expect only one set af weak repetitive shock-structure formed
by the expansion waves which escape beyond the plug-tip (See Fig. 32).
Thus, it is reasonable to conclude that at § > &, , the shock-associated
noise generated by the solid conical plug-nozzle flow with its two
independent families of repetitive shock structure be of higher level
than that radiated by the contoured plug-nozzle flow. For comparison of
the shock structure in spark shadowgraphs of the solid conical plug-
nozzle and contoured plug-nozzle at & = 4.0 and 4.5, see Figs. 12 and
13. At some operating pressure ratios § < §d + the shock structure may
appear on the plug surface (see Figs. 9 and 10). Comparatively, the
shock structure in the contoured plug-nozzle flow is less pronounced
because of the cancellation of the incident expansion wave fronts by the
initial part of the contoured plug. At pressure ratios § < §d , the
contour of the plug introduces compression waves only from the part of
its surface lying beyond the terminating surface of the P-M expansion fan
for the operating super-critical pressure ratio (see Fig. 32).
Therefore, one may conclude that for the entire range of pressure ratio
used in this study, the repetitive shock structure is comparatively more

pronounced and stronger in conical plug-nozzle flows and the noise levels
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from an equivalent solid conical plug-nozzle flow are comparatively
higher than those from the contoured plug-nozzle flows. For experimental
support of this argument, compare the OASPL vs 0 variations of a
contoured and an equivalent conical plug operated at § = 4.5 (Fig. 30).

The comparisons of the OASPL's vs 6 for the conical and the contoured
plug nozzles with those of a convergent nozzle operated at the same
pressure ratios have shown that substantial noise reductions are achieved
at all observer angles 15° < 0 < 120° . Since at lower 0's generally the
turbulent mixing noise is considered to be dominant, the observed
reductions at such low angles, therefore, may be attributed to helpful
flow modifications in the turbulent jet flows from the plug nozzles.
Perhaps the mounting of a short centerbody such as a conical or a
contoured plug with a pointed termination in a convergent nozzle has a
stablizing effect on the underexpanded turbulent free jet flow

from a convergent nozzle.

V.4. AEROACOUSTICS OF POROUS-PLUG-NOZZLE SUPERSONIC JET FLOWS.

The motivation for incorporating porosity in the plug-surface to
affect shock-structure modifications and the suppression of shock-
associated noise of improperly expanded jet flows issuing from plug-
nozzles has been noted earlier (see p. 7). Here, the acoustic performance
of the improperly expanded jet flows of a plug nozzle with perforated
plugs is compared with that of an 'equivalent' plug-nozzle with a conical
plug without perforations. The basic conical plug in each plug-nozzle
configuration has the same shape and contour and are mounted as a
centerbody in the same convergent nozzle. The acoustic performance of
such improperly-expanded jet flows issuing from an externally-expanded
plug nozzle with a non-perforated conical plug of pointed termination has
been presented in the preceeding section V.3

The one-third octave SPL spectra were recorded when the conical plug
had either 10 percent porosity (0 = 10%) distributed evenly over the
entire plug surface or four percent porosity (0 = 4%) distributed evenly
over the middle-third of the plug surface. The plug-nozzles with the
perforated plugs were operated at pressure ratios & = 2.0 to 4.5. The
specifications of the conical plug-nozzles used in these studies are

summarized in Table 2, p.22. For the extent of the recorded experimental
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data, see p.23

It should be noted that all the plug nozzles have the same annulus-
radius-ratio K , the same basic convergent nozzle of radius Ry, and the
same annulus width at the nozzle throat. Therefore, for the model plug-
nozzles with either a conical plug of entire solid surface or a
combination of solid/porous plug surface, the throat areas are the same
and when operated at the same pressure ratios and same stagnation

temperatures, the mass flow rates are matched.

V.4.1 Acoustic Results with Porous Plugs

Variations of the peak frequency with the observer angle 0 , for the
porous plug-nozzles at a pressure ratio of 3.6 (at which shockless flow
of the contoured plug-nozzle was achieved) are shown in Fig.41 for 10%
porosity and in Figure 43 for 4% porosity. For clarity, the one-third
octave spectra at various angles are plotted on a sliding scale. The
corresponding Strouhal numbers St. = £, W /Vy are plotted in
Figs. 42 and 44, respectively. The following observations can be made
about the variation of the peak frequency f, (or St. number) with 6 at

various super-critical pressure ratios.

1. At 0 > 60° , the peak 1/3 octave SPL's occur around 10 kHz. The
peak frequencies for the solid conical or contoured plug nozzles operated
at the same pressure ratios are comparable and similar to those for the

porous plug-nozzles. Compare figures 15, 35, 41 and 43.

2. Strouhal number vs. 0 plots (Figs. 42 and 44) exhibit peaks and
plateaus. For the same characteristic length W, and pressure ratio,
these also represent similar peaks and plateaus in the peak frequencies.
The overall range of the variations in the St. number is between
0.05 to 0.43 with St. number approaching approximately 0.2 at 6 = 120°

With 10% porosity, at § = 3.0 and & = 3.6, St. number peak = 0.44.
For & = 3.6, a second peak in St. number = 0.42 occurs at 6 = 105° . St.
number for both § = 3.05 and 3.6 reduce to 0.20 at 6 = 120° . For 4%
porosity, at & = 3.6 a peak plateau is observed in the St. number = 0.35
for © = 45° to 75° . The St. number reduces to 0.2 at 105° to 120°
Similar plateaus of St. number occur at € = 3.05 and 4.5 (see Figure 14.)
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For 6 <€ 30° , the St. number approaches 0.05 for each of the pressure
ratios and porosities.

Typical one-third octave SPL spectra at 0 = 90° for the two porous
plug-nozzles operated at § = 3.05, §& = 3.6 and § = 4.5 are presented in
Figs. 45, 46 and 47, respectively. For comparison, the corresponding SPL
spectra for the equivalent P-N with a plug of solid surface have been
included. The SPL's at a wide-range of band-center frequencies of plug
nozzles with the porous plugs are noted to be lower than those for the
equivalent plug-nozzle with the plug having solid surface.

The power level spectra of the porous plug-nozzles along with those of
the solid conical P-N, are shown for & = 3.05, § = 3.6 and § = 4.5 in
Figs. 48, 49 and 50, respectively. At & = 3.05, the 10% porosity results
in lower PWL's as compared to those of the solid P-N and the effect of 4%
porosity is noted to be minimal. At § = 3.6, by the presence of porosity,
the PWL's are noted to be significantly reduced at higher band- center
frequencies. In the underexpanded mode of operation (§ = 4.5), the
reduction in PWL's due to porosity are noted at all band-center
frequencies for which the data were recorded. The level of reductions in
PWL's for the 10% porosity, as compared to those for the solid conical
plug, is about 2 to 3 dB, and for the 4% porosity about 1.5 to 2.5 dB.
Therefore, the acoustic performance of the plug having 4% porosity
distributed in the middle-third of the conical plug, is often noted to be
sometime even better comparable to, sometimes even better then, that of
the plug having 10% porosity distributed over the entire plug surface.

Beyond fc > 50 kHz, the PWL's are observed to increase particularly at
the higher operating pressure ratios. Moreover, the sharpest increase in
PWL's occurs for the plug-nozzle with the solid conical plug. Therefore,
the plug-porosity is not the root-cause of this increase. For the
possible cause of this sharp increase at f_ > 50 kHz and the role of this
increase in the analysis of the acoustic data, see Appendix I.

The variations of the OASPL at 06 = 90°, for a range of the operating
pressure ratios both for the porous and the solid conical plug-nozzles
are shown in Fig. 54. At different pressure ratios, due to porosity,
noise-reductions of 1 to 4 dB are noted. 1In Fig. 55, AOASPL (= OASPL of
the equivalent convergent nozzle minus OASPL of different plug nozzles

used in this study) are plotted for 6 = 120° . For the entire range of
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operating pressure ratios, reductions in the OASPL's of 2.5 dB to 11 dB
of the underexpanded convergent nozzle flows are achieved by the use of
the plug-nozzle with either a contoured plug or a short conical plug or a
conical plug with porous surface. At pressure ratio &€ = 3.6, at which
contoured plug-nozzle flow is shockless, the reduction in OASPI for the
porous plug nozzle and the contoured plug nozzles are of the same order
of magnitude.

When compared with the acoustic performance of improperly expanded jet
flows from an equivalent convergent nozzle, the levels of the noise
reductions noted in the present investigation of plug-nozzles with short
solid/porous conical externally-expanded plugs with pointed terminatipns
are comparable to the levels of noise reductions reported by Maestrello
[22] and in a subsequent study by Kibens et al. [23]. As noted earlier,
in these studies a combination of a convergent nozzle and long cylindrical
porous center-bodies were used extending over almost the entire length of
the supersonic parts of the jet flow. Aerodynamically, this type of
nozzle configuration has weight and drag disadvantages. The geometrical
configurations of the plug-nozzle in the present study are typical of a
conventional plug-nozzle [24-26]. Thus, the noise suppression effects of
the short solid and solid/porous plugs of pointed termination on the
improperly expanded jet flows from plug-nozzles as noted in this
investigation are of much greater significance from the point of view of

engineering application in propulsion systems.

V.4.2. Observed Shock Modifications in Porous Plug-Nozzle Flows.

Typical spark shadowgraph of the improperly expanded jet flows
issuing from the convergent nozzle, the plug-nozzle with a solid conical
plug, the contoured plug nozzle, and the plug-nozzles with porous conical
plugs operated at a range of pressure ratios are reproduced in
Figs. 8-13. Each of these nozzles are operated at above critical
pressure ratios £ = 2.0, 2.5, 3.05, 3.6, 4.0, and 4.5, respectively.

The quantitative measurement of the shock angles from shadowgraphs of
jet flows from different nozzles at the same pressure ratio and at the
same location downstream of the respective nozzle throats shows that the
shock angles of the repetitive shocks for a convergent nozzle are larger

than those in the plug nozzle flows. Also, for & > 4.0, Mach reflection
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with its nommal shock-disk appears in convergent nozzle flows while in
plug nozzle flows, the crossing shock fronts from opposite jet flow
boundaries are oblique. This means that at the same pressure ratio, the
shock structure in underexpanded jet flow of the convergent nozzle is
stronger. At pressure ratio £ = 3.6, the contoured plug nozzle flows
are shock-free. Because of the cancellation of the incident expansion
fronts from part of the plug surface, even at the off-design pressure
ratios the shock structure in contoured plug-nozzle flows is much weaker
than in convergent nozzle jet flows operated at the same pressure ratio.

The shock-modifications by the porosity of the plug surface are
affected essentially by the following two factors:

(a) Interaction of Waves of Opposite Polarity:

The reflection of wave fronts (may these be compressions or
expansions) incident on a solid surface meet the condition that the flow
follows the surface. Therefore, a compression wave front incident on the
solid surface reflects as a compression and an expansion front reflects
as an expansion. On the other hand for a freely expanded jet flow the
pressure along the jet boundary is constant and, therefore, an incident
compression front reflects as an expansion and an incident expansion, as
a compression.

Over the porous plug surface both the flow direction and constant
pressure conditions need to be satisfied from the successive adjacent
parts of the plug. Thus, the expansion rays of the fan originating at the
nozzle lip will impinge in sequence on the porous and the solid parts of
the surface of the porous plug and these will reflect as compressions and
expansions, respectively (See illustrations in Fig. 56(b)). These waves
on reaching the free jet boundary are reflected as waves of opposite
polarity. Thus, the flow field is closely interspersed with the cross-
crossing wave fronts of opposite nature of pressure changes, some
diverging and some converging and, thus, mutual weakening of the expansion
and compression wave fronts occurs. If and when any coalescence of the
compression fronts develops, it results in weak oblique shock structure.
For illustrations, see flow sketch of Fig. 56(b), which corresponds to
the wave weakening visible in shadowgraphs of Fig. 12, & = 4.0 for porous

(6 = 10%) plug-nozzle flow.
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(b) The Two-Family Shock Structure

In jet flows from a plug-nozzle having a plug of solid surface, the
reflections of the incident expansion waves as expansions from the plug
surface and their reflections as compressions from the free jet boundary
lead to the formation of a repetitive shock structure in the flow (see
shocks labelled s, in spark shadowgraphs of Figs. 9~13, and the shock
labelled s, in the flow sketch of Fig. 56. Since the length of the
conical plug is shorter than that of the contoured plug, at the same
operating pressure ratio (§ > §,) the conical plug fails to intercept
some of the expansion waves emanating from the nozzle lip. The escaped
waves reflect as compressions wave fronts from the opposite free jet flow
boundary; these compression wave fronts may coalesce and form a shock
front and finally a second family of repetitive shock cell system is
formed (see shock labelled s, in Figs. 9-13 and the shock labelled s, in
flow sketch shown in Fig. 56).

The two independent families of the repetitive shock structure of
different origins may be weakened because of the criss-crossing of waves
of opposite polarity. Thus, by appropriate use of porosity on short
conical plugs, nearly shock-free improperly-expanded plug-nozzle jet
flows can be achieved.

As stated before, the focus of these experiments was to study the
noise suppression role of plug-nozzles with short plugs as centerbodies.
Therefore, to have a conical plug nozzle not any longer than the contoured
plug-nozzle, the conical plug used was selected to have the same surface
area and annulus radius ratio as the contoured plug. Due to geometrical
closeness of the conical plug to the contoured plug, the shock structure
in the conical plug-nozzle flows at off-design conditions was weak to
start with. As a result, in these studies, the role of porosity of the
plug in introducing shock modifications and achieving reduction of shock-
associated noise was found to be less important than just the presence of
the short conical solid plug as a centerbody. However, should practical
considerations dictate the use of a conical solid plug which is of
substantially different geometrical specifications than a contoured plug
(say a plug of larger annulus-radius ratio K and/or of larger length ratio
L,.x/R, as compared to the corresponding specifications of either the

solid conical plug or the contoured plug used in this study) then the

S
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repetitive shock structure in the jet flows will be more prominent and
stronger. For improperly expanded jet flows from such plug-nozzles, the
modifications and weakening of the shock structure due to plug-porosity
and the reductions achieved in the shock-associated noise are likely to be
more significant than was observed to be the case for the conical plug

used in the present study.
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Fig. 55. Shock-Associated Noise Suppression of Various Plug-Nozzle Jet Flows
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Angle 6 = 120°.
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VI. CONCLUSIONS

1. The noise levels (SPL's, OASPL's, and PWL's) radiated by the fully-
expanded (shockless) jet flows issuing from an externally-expanded contoured
plug-nozzle with a pointed plug termination are substantially lower than those
from underexpanded jet flows of an equivalent convergent nozzle operated at the
same pressure ratio. The OASPL reduction of around 10 dB have been
consistently observed at all angular locations 15° < @ < 120° measured with
respect to the downstream jet axis. At higher observer angles, these
reductions are attributable to the suppression of the shock- associated noise.
By similar comparison, significant levels of noise reductions are also observed
even when the contoured plug nozzle is operated at a range of off-design
pressure ratios in the over- and the underexpanded modes. It is shown that the
repetitive oblique shock structure in both the over- and the underexpanded plug-
nozzle jet flows is weaker than that in the underexpanded jet flows from an

'equivalent' convergent nozzle operated at the same pressure ratio.

2. The acoustic data gathered for the fully-expanded (shockless) jet
flow issuing from a contoured externally expanded plug-nozzle with a
pointed plug-termination and annulus-ratius-ratioc K = Rp/RN = 0.43
operated at pressure ratio & = 3.6 are tabulated in (Appendices III
lossless) and IV (uncorrected). The lossless acoustic data for the
contoured plug-nozzle are used as the baseline data for comparative
assessment of the acoustic performance of supersonic jet flows issuing
from equivalent plug-nozzles of various configurations operated at a

range of super-critical pressure ratios 2.0 < £ < 4.5,

3. The processes of the development of the flows of (a) an
underexpanded jet from a convergent nozzle, (b) the over- and
underexpanded jet flows from a C-D nozzle operated with its exit flow to
be at the design Mach number and (c) a contoured plug nozzle operated in
the over- and the underexpanded modes result in shock structures of
different configurations and strengths. Therefore, the acoustic performance
of the improperly expanded jet flows from the contoured plug-nozzle
operated at off-design pressure ratios does not follow either the Harper-
Bourne and Fisher scaling for the underexpanded jet flows from a

convergent circular nozzle or the Tam-Tanna scaling for the over- and the
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underexpanded jet flows from a convergent-divergent symmetric nozzle of a
given design Mach number. For the contoured plug-nozzle jet flows, the
overall Sound Pressure Levels at either 8 = 900 or 1209 over a range of
pressure ratios (ie., OASPL's mostly for shock-associated noise) varied
approximately as B? where shock- strength parameter B = (M - 1)/? and
not as B“ as observed by Harper- Bourne and Fisher for the underexpanded
jet flows from convergent round nozzles. Similarly for the contoured plug
nozzle OASPL's vary approximately as P% where B, = (M] - M2)'/? and not B}

b]
as observed by Tam- Tanna [2] for the contoured C-D nozzle Jjet flows.

4. The aeroacoustic performance of an externally-expanded plug-
nozzle with a short solid conical plug of a pointed termination having the
same annulus-radius-ratio K, the same throat area, and the same surface
area as a contoured plug-nozzle (and thus even shorter than the contoured
plug) when operated at the same pressure ratio as a contoured plug is
noted to be fairly close to that of the contoured plug-nozzle. The noise
levels for the solid conical plug nozzle, though higher, are within 3 dB
of the contoured plug-nozzle when operated at the same pressure ratio.
Therefore the presence of such short conical plugs with pointed
termination in the convergent nozzle itself, acts as an effective
suppressor of noise radiated by the improperly expanded jet flows issuing

from a convergent nozzle.

5. The evenly distributed porosity over either the entire or the
middle third of the plug-surface results in the weakening of the
repetitive cellular shock structures in the improperly expanded jet flows
of the plug-nozzles having short conical plug of pointed termination.
The attendant reductions in the shock-associated noise component are
achieved. The reductions in OASPL for the porous short conical plugs as
compared to the solid conical plug of the same geometry but without
perforations, are noted to be of the order of 2 to 3 dB. If the solid
conical plug were to be of a markedly different contour and shape from
those of a contoured plug, stronger repetitive shock structure will be
present in the conical plug-nozzle jet flows. Because of porosity, the
modifications in the shock-structure and the resulting shock-associated

noise reductions may be more significant.
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6. The conical plug having a porosity of 4% distributed only over
the middle-third of the plug surface is found to have an aeroacoustic
performance often comparable to that of the same plug having a porosity

of 10% distributed over the entire surface of the plug.

7. The noise reductions achieved through the use of porosity over a
short solid conical plug with pointed termination are often comparable to
those observed for a contoured plug operated at design or at slightly off-
design conditions where only weak repetitive shock structures are present.
This suggests that by judicious selection of the plug contour, shape,
annulus- radius-ratio K, length and the extent and the distribution of
porosity, the shock structure in improperly expanded jet flows issuing
from plug- nozzles can be modified and weakened to approach those of a
contoured plug at its design pressure ratios. Therefore, to achieve noise
reductions in improperly expanded jet flows, the use of an externally-
expanded plug-nozzle with a short conical porous plug of pointed
termination, is an attractive alternative to either a contoured plug-
nozzle or a contoured convergent-divergent nozzle operated at their

respective off-design conditions.
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APPENDIX I
Corrected Acoustic Spectral Data and the Upper
Cut-0ff Band-Center-Frequency

In the present investigation, the one-third octave SPL spectral
data recorded over the frequency range between the band-center
frequencies £, = 200 Hz and £, = 100 kHz were corrected for the
microphone corrections as well as for the acoustic absorption due to
humidity in the anechoic chamber. The microphone corrections for the
1/4™ B & K condenser microphone with grid, used in the normal-
incidence mode, were applied as listed in Table I-1. The humidity
corrections were calculated based on the relation by Evan and Bass
[28]. A typical sound absorption in the atmosphere at 30% humidity vs
frequencies is shown in Fig. I-1l. For details, see Ref. 43.

It may be noted that the annular-throat-width of the model plug-
nozzles is 13.56 mm and the exit radius Ry of the model convergent nozzle
is 22.5 mm (Table 2, p.23. For model plug-nozzles with such small
annular throat, the SPL's at upper band-center frequencies will be higher
than those for an equivalent convergent nozzle. The peak frequencies in
the one-third octave SPL spectra for the model convergent nozzle were
noted to be of the order of 4 to 6 kHz and for the model plug-nozzles
were generally of the order of 10 kHz. For the convergent nozzle flows
(& = 4.0, 6 = 90°), approximately 10 dB drop in the uncorrected SPL's
occurs around an upper band-center frequency f, = 20 kHz (Fig. 4(a) and a
similar drop in the uncorrected SPL's for the conical plug-nozzle flows
at the same pressure ratio and angular location occurs around f. = 50 kHz
(Fig. 34(a). Therefore, for the plug nozzle flows, comparatively higher
levels of acoustic signals are present at higher band-center frequencies.
Moreover, the noise attenuations at higher frequencies due to relative
humidity in the anechoic chamber will also be higher for the plug-nozzle
spectra. Therefore, the corresponding levels of corrections at higher
band-center frequencies are larger in magnitude. The significance of
these corrections vis-a-vis the choice of upper cut-off frequency in the
analysis of the present 1/3 octave spectral data is discussed in what

follows.
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The corrected (lossless) data were analyzed over the frequency range
between the one-third octave band-center frequencies £, = 200 Hz to
100 kHz. A typical set of the uncorrected and the corrected 1/3 octave
spectral data at 0 = 90° are tabulated in Table I-3, for the model solid
conical plug-nozzle operated at £ = 4.5. The microphone and the humidity
corrections are listed separately. It is noted that the level of the
combined microphone and humidity corrections applied to the acoustic data
at higher band-center frequencies (f, = 63 kHz; 80 kHz and 100 kHz) are
rather high and that the absorption corrections are dominant. With such
large corrections, the corrected one-third SPL spectra show a sharp
increase at band-center frequency f. > 63 kHz. This increase is most
pronounced for the SPL's of jet flows from conical plug-nozzles with the
solid as well as the solid/porous surfaces. For the model convergent
nozzle this peculiarity of the rising trend in the corrected acoustic
data at higher band-center frequencies is generally absent (see Ref. 43
for details).

The observed increase at higher center-frequency bands (£, > 50 kHz)
in the corrected SPL's, could perhaps be attributed to the higher
acoustic levels at higher band-center frequencies generéted by the jet
flows from the model plug-nozzles with narrow annular-throats. The
nature and the levels of this increase in the corrected SPL's at
f, > 63 kHz are substantially similar for the model plug-nozzles with
either the solid or the porous plugs (Fig. 42). Since the increase is
observed to occur both from solid as well as porous plug nozzle flows, it
is surmised that this increase in SPL's at £, > 63 kHz is not caused by
the presence of the perforations of the porous plug. Moreover this type
of increase is not present for convergent-nozzle flows. The narrow
annular throat of the plug-nozzle, therefore, seems to play a primary
role in the generation of acoustic spectra with higher frequency content
which at higher band-center frequencies requires higher levels of
corrections. If the humidity corrections at £, > 50 kHz, are
overestimated by the Evan and Bass relation [28], then the corrected
spectral data may result in an increase in SPL's of the type seen in
these studies [Ref. 43].

Assuming that the over-shoot in the corrected SPL's at f. = 63, 80

and 100 kHz is primarily the result of such an over-estimation of the
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corrections due to absorption and is not due to the higher acoustic
levels generated at higher band-center frequencies by jet flows from
model plug- nozzles with small annulus-height, it was considered
advisable to set the upper cut-off band-center frequency at 50 kHz for
the analysis of the corrected acoustic spectral data. Though the
magnitude of the reductions in OASPL's changed somewhat with the upper
band-center cut-off frequency [Table I-3], yet the nature of the
results and conclusions about OASPL vs 0 at different £'s; the AOASPL's
as compared to those of an equivalent convergent nozzle and comparisons
with the predicted OASPL by Stone for the contoured and the plug
nozzles, remain essentially similar [43].

If absorption corrections due to Evans and Bass [28] at band-center
frequencies 63 kHz, 80 kHz, and 100 kHz turn out to be of questionable
validity, then for the analysis of the acoustic data in the present
study, the upper cut-off frequency f. = 50 kHz would be a more reasonable
choice. If a more accurate relation predicting the atmospheric
absorptions-corrections were to become available in the future, then to
facilitate the inclusion of such corrections (if needed), the uncorrected
SPL spectral also have been tabulated in Appendix IV, where the needed
values of the ambient conditions, and the radial distance at which these
acoustic data were recorded, are also listed. The corresponding

microphone corrections are tabulated in Table I-1.

-119-



TABLE I-1

Microphone Corrections

B and K Condenser Microphone Diameter 1/4"

Cartridge Type B & K 4135

Serial Number 101169

Used at Normal Incidence (i.e. at zero angle of incidence): with
microphone grid in place).

Pre-amplifier: Type B & K 2615

Microphone Adaptor: Type UA 0035

Microphone corrections are taken from calibration provided by B and K
and are to be added algebraically to the 1/3 octave SPL's obtained from

acoustic spectra recorded on the Level Recorder.

kHz Correction dB kHz Correction dB kHz Correction dB

0.100 0 1.000 0 10.000 -.50
0.125 0 0.250 0 12.5000 0
0.160 0 0.600 0 16.000 -0.8
0.200 0 2.000 0 20.000 -1.4
0.250 0 2.500 0 25.000, -2.9
0.315 0 3.150 0 31.500 -4.5
0.400 0 4.000 0 40.000 -5.2
0.500 0 5.000 0 50.000 -3.2
0.630 0 6.200 0 63.000 +0.7
0.800 0 8.000 -.25 80.000 +3.1

100.00 +9.5
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AMBIENT CONDITIONS (AVERAGE VALUES)

Atmospheric Pressure P, = 14.6 PSIa

Chamber Temperature T, = 68°F

10
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TOTAL ABSORPTION IN DB/1000FT.

\BALLC mER SRSl ]

o 10 1 10 19 10
FREQUENCY IN HZ.

Fig. I-1 Sound Absorption in Atmosphere at Relative-Humidity
of 30%. (Reference 28).
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TABLE I-2
Typical Comparison of Corrected and Recorded 1/3 Octave SPL's
Model: Solid Conical Plug-Nozzle K = 0.43 R = 3.05 m

Pressure Ratio: § = 4.5. Azimuthal angle at the Measuring Station: 0 = 90°

f. (kHz) 1/3 Octave SPL's Correction
Recorded Corrected Microphone Atm.Absorp.
0.200 89.0 89.0 0 0
0.250 89.5 89.5 0 0
0.315 90.5 90.5 0 0
0.400 91.0 91.6 0 0
0.500 91.8 91.8 0 0
0.630 92.8 92.8 0 0
0.800 93.8 93.8 0 0
1.000 95.0 95.0 0 0
1.250 96.0 96.0 0 0
1.600 97.5 97.5 0 0
2.000 98.5 98.5 0 0
2.500 99.5 99.5 0 0
3.150 102.5 102.5 0 0
4.000 104.3 104.4 0 +0.1
5.000 105.0 105.1 0 +0.1
6.300 106.5 106.6 0 +0.1
8.000 106.5 106.4 -0.25 +0.15
10.00 106.5 106.3 -0.50 +0.3
12.50 105.5 106.0 0 +0.5
16.00 105.5 105.4 -0.8 +0.7
20.00 105.0 104.7 -1.4 +1.1
25.00 105.0 103.7 -2.9 +1.6
31.50 104.8 102.7 -4.5 +2.4
40.00 104.0 102.4 -5.2 +3.6
50.00 102.0 103.8 -3.2 +5.0
63.00 100.0 107.5 +0.7 +6.8
80.00 97.0 109.2 +3.1 +9.1
100.00 93.0 114.2 +9.5 +11.7
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APPENDIX II
Aeroacoustics of Solid/Porous Conical Plug-Nozzles

with an Approximately Contoured Plug

An approximate method for a relatively quick design of plug contours
for high pressure ratio plug-nozzles for rocket engines was developed by
Greer [42]. This method, when tried in the present plug-nozzle study at
relatively low super-critical pressure ratios (the design Mach number
M, = 1.5), resulted in a convexity downstream of the sonic region in the
predicted plug surface contour. .The expansion waves generated in
supersonic flow past such a convexity of the plug surface, develop, on
subsequent reflections from free jet boundary as compression, into an
unacceptable shock structure. Therefore, in the course of the present
investigation, a simple alternate approximate method for plug-contour

design was developed.

ITI.1. Approximate Method of Plug Contour Design

In the corner expansion over the shoulder of an axially symmetric
body, the flow locally (at the shoulder) may be considered to be two-
dimensional (Prandtl-Meyer expansion). If the expanded flow over the
contoured plug were to be directed along the axis of the plug-nozzle, the
wall of the convergent round nozzle should be inclined at an angle o which
is equal and opposite to the Prandtl-Meyer angle v (M) corresponding to
the design Mach number M, at the plug-exit.

Thus, for an ideal gas with constant specific heats and in absence

of the boundary layer effects,

V(M) = ‘% . tan™! \g—;—i . (M*-1) - tan™! YMZ-1 (1)

where

lal = |v(My) |

For nomenclature of the externally-expanded plug-nozzle geometry and

flow, see Fig. 1.
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In axisymmetric corner flows, the Mach surfaces in general are
curved. However, in the present case the curvature of the waves is
assumed to be negligible. 1In the absence of the viscous effects, the
plug surface is assumed to be a streamline of the flow. Then, using the
conservation of mass between the throat OP and any section 0Q (both
sections being surfaces of conefrustums having the same axis as that of

the jet),
P.A V., =P AV sinp

or,

\
A sin p _ Pt

A pVv = £ (3)

where f (M) represents the area-Mach number relation for isentropic flow

in a streamtube, given by

(y + 1)
[2 (1+L——;1M2)2(Y-1)

£(M) = i Y+ 1 (4)

The area A formed by revolution of the Mach line 0Q about the jet-

axis is
A = 27r By * Ry = 0
2
where
r = y/sin ¢

Solving this quadratic equation in y and noting that y cannot be

greater than the nozzle radius Ry,

y-R, - Vrg - 2sine (5)

-124-




Using the relations (3) and (4)

£a0) ., sin ¢]'"?
1 . in
y =Ry - T [Ae - sin H J
Since the geometrical relations,
b=p+a-v (6)
y =r sin ¢ (7)
and
X =1r cos ¢ (8)

are available, therefore, for a given nozzle radius Ry and design exit
Mach number M, (=My), the plug coordinates can be determined by use of
equations (1) through (8).

It may be noted that for a given nozzle radius Ry and exit Mach
number M;, the length of the isentropic plug is fixed. Also, the annulus-

radius-radio K = (Rp/RN) of the plug-nozzle given by

V cos [Vv(M;)]
£(M,)

is fixed if the exit (design) Mach number M, is fixed. Thus for given
M; and Ry, the parameters K, the annulus width W, and the maximum

length L ., of the plug are uniquely fixed.

II.2 Model Configurations

The coordinates of plug-contour obtained by the approximate method
are tabulated in Table II-1l. The approximately contoured plug-nozzle for
design Mach number = 1.5 had an annulus-radius-ratio K = 0.41 and the
inner wall slope of 21.1° at the sonic point.

The corresponding uncontoured solid conical plug had K = 0.41, inner
wall slope of 21° and L,,, = 28.8 mm and L, ,,/R, = 1.28. The noise

suppression effect of porosity was also studied on this solid conical
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plug. Porosity of 10% distributed over the entire surface and porosity of
4% distributed over the middle-third of the plug were investigated. The
diameter and the depth of the perforation were, respectively 1 mm. and 2
mm. All the plug-nozzles (contoured and solid/porous conical) had the

same throat area.

II.3 Experimental Observations

The acoustic measurements and shadowgraphic records of the
approximate plug-nozzle jet flows are presented in Figs. II.l and I1.2
respectively.

At an operating pressure ratio & = 3.04 (when the design pressure
ratio §4.414n = 3-67), in the spark shadowgraphs (Fig. II.2) the
contoured plug-nozzle jet flow was observed to be reasonably free of
shock structure. Moreover, the free jet boundary is nearly horizontal
and straight at the nozzle exit. Therefore, at this pressure ratio the
flow is nearly isentropic. The shock (b) as visible in Fig. II.2 (A):

E = 3.04) is too weak to form, on subsequent reflections, a repetitive
shock structure farther downstream. Thus, the contoured plug designed by
the approximate method when used at a pressure ratio noticeably different
and lower than the design pressure ratio resulted in a jet flow which is
reasonably free of shock-structure.

The acoustic results and the optical data of the jet flows of the set
of plug-nozzle based on the approximate plug-nozzle design (K = 0.41 but
for & = 3.00 or M = 1.37 instead of & = 3.67 (or M; = 1.5)) are found to
be in qualitative agreement with the results for the contoured plug-
nozzle designed by MOC for M = 1.5 having K = 0.43 presented in the main
body of this report. The order of magnitudes of the comparative noise
suppression effects of the contoured and solid/porous conical plug-nozzle
for each case are noted to be similar. The noise suppression effects of
porosity are also comparable for both configurations of plug-nozzles.
This is so because the near-shockless flow is achieved for both cases
when K = 0.43 (exact method of plug design) and K = 0.41 (approximate
method of plug design) respectively. It should be noted that for the
exact method the shockless jet flow is achieved at pressure ratio
(¢ = 3.60) which is very nearly the same as the design pressure ratio

(¢ = 3.67).
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For further details of the experimental data gathered with the
approximate contoured plug and the corresponding solid/porous conical
plug-nozzles, see Ref. 29 and 43.

TABLE II-l: PLUG COORDINATES IN CMS.

X Y | X Y
contoured conical | contoured conical
~0.277 1.313 1.313 | 1.083 1.827 1.835
-0.-10 1.415 1.415 | 1.177 1.858 1.871
0.112 1.463 1.462 | 1.274 1.890 1.908
0.214 1.503 1.501 I 1.374 1.922 1.947
0.306 1.540 1.537 | 1.478 1.954 1.987
0.394 1.574 1.571 | 1.586 1.986 2.028
0.479 1.607 1.603 I 1.698 2.019 2.072
0.563 1.639 1.635 | 1.816 2.052 2.117
0.647 1.671 1.668 | 1.938 2.086 2.163
0.731 1.702 1.700 | 2.066 2.120 2.213
0.816 1.733 1.733 | 2.200 2.155 -
0.903 1.764 1.766 | 2.340 2.190 -
0.992 1.796 1.800 | 2.488 2.225 -

I
(Note: Origin is at the nozzle lip)

P : sonic point on the plug

K = Rp/RN

Jet Axis
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ORIGINAL PAGE .i3
OF POOR QUALITY

£=304

Convergent Nozzle

£ =367 : o

= 3.67
Contoured Plug-Nozzle
Convergent Nozzle A
Fig. 11-2 Typicai Spark Shadowgrphs of Supersonic Jet Fiows
Legend of Flow Features in shadowgraphs
(a) Repetitive shock structure (e) Compression wave front
(b, or sl) Shocks related to reflections (f) Mach disk
from plug surface (g) Slip surface
pi 511 % = n o 1 < 1 TT - SR TR | m rnlaio 140
(c) Lambda shock at jet flow boundary (h) Weak shock from plug lip
(d, or 82) Shock formed from the reflection of (i) Compression waves generated
expansions unintercepted by the plug at the porous plug surface.
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§ = 304

> i

Porous Conical Plug-Nozzle (0= 4% , holes locally distributed ) Ficqous Sorieal Pl eRioesls {G=4% - holes [ocally diiibied)

=285 ; : L3k ’ :
Porous Conical Plug-Nozzle ( 3=10% , holes uniformly distributed) Porous Conical Plug-Nozzle ( = 10%,holes uniformly
distributed)
Fig. 11-2 Cont'd B
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ORIGINAL PacET ;-

OF POOR QUALITY

&

Solid Conical Plug-Nozzle So

B A S ey jg%k 3

Porous Conical Plug-Nozzle ( 0= 4% , holes locally distributed )

Porous Conical Plug-Nozzle ( g= 10%, holes uniformly distributed

Cc

Fig. 11-2 Cont'd
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APPENDIX III

The 1/3 octave sound pressure level data corrected for the microphone
and atmospheric absorption corrections over the band-center frequencies
f. = 200 HZ to 50 KHZ at all observer angles O for each of the nozzle
configurations and pressure ratios are tabulated on pp. 137-159 For the
microphone and absorption corrections see Appendix I. The acoustic '
results presented in the main body of this report are based on these
corrected (lossless) SPL data. The corresponding OASPL's at all observer
angles 0 calculated for the pressure ratios § = 2.0 to 4.5 for each of the

nozzle configurations are tabulated on p. 160.
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OF POOR QUALITY

“Corrected 1/3 Octave SPL's

Test Model: Convergent Nozzle Measurement - Radius R = 3.05 m
. o

Reservoir Pressure = 15 psig Dry Bulb Temp. = 83 F

Atmospheric Pressure = 29.42 in Hg Wet Bulb Temp. = 71° F

Theta in degrees

0.200 87,0 81.0 76,0 76.0 71,0 74.0° 74.0 74.0 96.8
0.250 90.0 87.0 79.0 78.0 75.0 76.0 75.0 75.0 100.2

0.315 93.00 90.0- 82,0 81.0 79.0 78.0 76,0 76.0 103.1
0.400 94,0 92,0 84.0 82.0 80.0 80.0 78.0 78.0 105.4
0.500 99,0 94,0 87.0 84.0 82.0 82.0 - 80,0 82,0 108.0
0.630 100.0 96.0 B8%9.0 85.0 85.0 83.0 82,0 81.0 109.4
0.800 104.0 101.0 1.0 88.0 87.0 85.0 84.0 83,0 113.4
.1.000 104.0 103.0 94,0 91.0 89,0 87,0 85.0 85.0 114.8
1.250 104.,0 104.0 96,0 91,0 90.5 88.0 87.0 86.0 115.6
1.600 104.0 104.0 7.0 93.0 91.0 ©90.0 88,0 87.0 115.9
2.000 104.,0 104.0 98,0 95.0 93.0 91.0 90.0 88.0 116.4
2.500 103.0 103.5 100.0 95.0 94,0 92,0 91.0 90.0 116.6
3.150 101.,0 102,0 100.,0 946.0 95,0 92.5 91,0 90.0 116.1
4.000 99.1 100.1 100.1 97.1 96.1 98,1 91.6 92.1 116.5
6.300 9601 9601 10001 9701 9801 9901 9501 10101 11709“
8.000. 94.0 96.0 100.0 97.0 98.0 99.0 100.0 102.0 118.6
10.00, 92.8 94,8 97.8 94.8 98.8 99.8 99.8 101.8 118.5
12.50 * 92,5 94.5 97.5 97.5 99.5 101.5 101.5 101.5 119.2
16.00 89,0 93,0 97.0 97.0 99,0 100.0 .100.0 99.0 117.9
25.00 87.9 91.9 959 96,9 97.9 97.9 95.9 96.9 116.0

31.50' 8501 8706 9501 97.1 7.1 97.1 96.1 95.1 11503
40.00 82.5 82.5 92.5 922.5 4.5 4.5 22.5 2.5 112.2
' 50.00 78.8° 79.8 88.8 ?0.8 9;.8 ?3.8 ?20.8 ?0.8 110.4

- - a 2 mem e
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Corrected 1/3 Octave SPL's

Test Model: Convergent Nozzle Measurement - Radius R = 3.05 m
Reservoir Pressure = 22 psig Dry Bulb Temp. = 83° F
Atmospheric Pressure = 29.42 in Hg Wet Bulb Temp. = 71° F
Theta in degrees o
fC (kHz) = = = = = === == - == == =-— - === ==-2c==---=---=--°"°"
15 30 . 45 60 75 30 105 120 PWL
0.200 30.0 85.0 78.0 77.0 75.0 74.0 76.0 74.0 99.4
0.250 33. 0 g8. 5 84.0 81.0 79.0 78.0 78.0 76,0 102.9
0.315 97.0Q 2.9 87.0 85.0 83.0 82.0 80.0 78.0 106.7
0'400 101.0 9()00 8900 8600 8500 8400 8000 . 8000 10909
0.500 104.0 ?28.0 ?2.0 88.0 87.0 86.0 83.0 84.0 112.5
9-630 108.0 102,95 3.0 ?1.0 ?0.0 88.0 85.0 85.0 115.0
- 0.800 107.0 106.0 ?7.0 ?23.0 |, 92,0 90.0 87.0 86.0 117.7
1.000 108.0 108.,0 100.0 95.0 94,0 92.0 90.0 90,0 119.5
1.250 109.0 110.0 101.0 ?6.0 95.0 ?4.0 ?1.0 91.0 121.1
1.600 109.0 111.0 102.,5 ?29.0 97.0 95.0 93.0 92,0 122.1
2.000 109.0 112.0 104.,0 100.0 ?8.0 ?6.0 95.0 3.5 123.0
2.500 10.0 110.,0 105,0 101.0 100.0 99.0 ?5.0 25.0 122.6
3.150 108.0 109.0 105.0 102.0 102,0 100.0 100.,0 103.0 123.1
4.000 106.1 107.1 105.,1 101.6 102.1 103.1 103.1 105.1 123.4
5.000 104.1 106.1 105.1 102.1 104.1 105.,1 106.1 107.1 124,46
6.300 100.1 10%.1 105.1 104.1 105.1 106.1 107.1 107.1 125.2
8.000 38.0 104.0 105.,0 106.0 105.0 105.,0 105.0 107.0 124.6

10.00 | 97.8 101.8 104.8 106.8 104.8 103.8 104.8 104.8 124.1
12.50 , 37.5 101.5 105.5 107.5. 103.5 104.5 105.,5 105.5 124.5
16.00 96.0 101.0 105.0 104,0 103.0 102.,0 103.5 102.0 122.4
20.090 94.8 100.8 104.8 103.8 102.8 102.8 103.3 101.8 122.3
25.00 93.9 98,9 101.9 102.9 101.9 100.9 101.9 100.9 120.8
31.50 93.1 8.1 ?9.1 98.1 100.1 ?29.1 101.1 100.1 118.9
40.00 87.3 4.5 96.95 ?4.5 6.9 28.5 . 98.5 6.5 116.2
50.00 84.9 883.8 2.8 93.8 ?4.8 ?4.8 ?7.8 ?23.8 114.,0

-~ -
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Corrected 1/3 Octave SPL's

Test Model: Convergent Nozzle Measurement - Radius R = 3.05 m
Reservoir Pressure = 44 psig Dry Bulb Temp. = 83° F

Atmospheric Pressure = 29.42 in Hg Wet Bulb Temp. = 71° F

Theta in degrees _ _ _ _ _ _
(kHz) - = == === =-=-==-----=-=---==-=-=--=°-°=°=°=°-""°°7 '
15 30 45 60 75 90 105: 120 PWL

0.200 101. 0O 923.0 88.0 86.0 . 83.0 82.0 81.0 81.0 109.0
0.250 104.0 96.0 70,0 89.0 85.0 84.0 83.0 82.5 111.8
0.315 107.0 101.0 22,0 920.0 87.0 86.0 85.0 83.0 115.0
0.400 116.0 104.0 ?24.0 92.0 89.0 88.0 87.0 84.0 117.9
0-590 112.0 107.0 98.0 94,0 92.0 ?20.0 88.0 86,0 120.3
0.630 134.6 110.0 100.0 96,0 93.0 91,0 90.0 88,0 123,0
0.800 116.0 113.0 103,0 ?9.0 95.0 ?4.0 23.0 ?1.0 125.2
1.000 117.0 116.,0 105.,0 100.,0 ?7.0 6.0 95,0 92.5 127.2
1.250 118.0 117.% 107.0 101.0 ?9.0 97.0 96.0 ?5.0 128.6
1.600 119.5 119.0 108.,0 102,0 100,0 ?8.0 96,0 ?25.0 130.,0
2.000 119.& 119.0 109.0 104.0 102.0 100.0 99.0 100,0 130.2
2.500 119.0 118.% 110.0 105.0 104.0 103.0 104.0 106.0 130.3
3.150 118.0 117.% 110.0 10%.5 106.0 108,0 111,0 114,0 131.5
4.000 117.6 117.1 11i1.,1 107.1 108.1 114.,1 113.1 114.1 132.5
5.000 116.1 116.1 111,1 109.1 112.,1 115.1 113.1 114,1 132.9
6.300 115.1 115.1 112.,6 113.1 114.1 114.,1 112.,1 111.1 132.8
8.000.114.0 113.0 113,0 116.0 113.0 112,0 112.0 111.0 132.5

10.00,112.4 112.3 114.8 115.8 110.,8 111.8 110.8 110.8 132,2
12.50 111.5 112,5% 116.5 115,5 111.5 111.5 111.5 109.5 132.5
16.00 110.0 111.,0 1146,0 113,55 111.0 111.0 111.0 109.0 131.5
20.00 lv8.8 110.8 113.,8 112.8 110.8 110.8 109.8 108.8 130.6
25.00 106.4 10%9.9 112,9 111.9 109.9 109.9 108.9 106.9 129.6
31.50 104.1 108,46 112,1 111.1 109.1 109.1 107.1 105.6 128.6
40.00 100.5 106.%5% 107.5 107.5 107.5 106.5 103.5 104,5 125.7
50.00 ?g-ﬁ 102.8 105.8 105.8 104,.8 102.8 101.8 101.8 123.2
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'Corrected 1/3 Octave SPL's

' Test Model: Contoured Plug Nozzle

Measurement - Radius R = 3.05 m

Reservoir Pressure = 15 psig - Dry Bulb Temp. = 55° F
Atmospheric Pressure = 29.64 in Hg Wet Bulb Temp. = 51° F
. RH = 60%

fo(kHz) - - - = = = == - - - - Theta in degrees _ _ _ _ _ _ _ _ _ _ _ _ ____._

15 30 45 60 75 30 105 120
0.200 81.0 . 74.0° 73,0 70.0 72,0 72.0 72.0 72.0
0.250 B4.0 80.0 76,0 73.0 75.0 74.0 73.0 73.0
0.315 90.0 85.0 79.0 76.5 78.0 76.0 ° 76.0 74.0
0.400 92,0 87.0 81.0 78.0 79.0 78.0 77.0 74.0
0.500 5,0 90.0 84,0 81.0 80.0 80.0 80.0 77.0
0.630 98,5 93,0 86,0 84,0 B83.0 82.0 80.0 79.0
1 0.800 103.0 95.0 87.5 B86.0 83.0 84.0 83,0 79.0
1.000 103.0 98.0 90,0 88.0 86.5 85.5 B85.0 82.0
1.250 104.5 100,0 93,0 90.0 87.0 87.0 87.0 83,0
1.600 10%5.0 .103.0 %4.0 91.0 88.0 88.0 88.0 84,0
2.000 105.0 103.0 95.0 92,0 89.0 89.5 88.0 85,0
2.500 10%.,0 103.0 97.0 94.5 92.0 90.0 89.0 87.0
3.150 102,0 103.0 98.0 95.0 92.0 91,0 90.0 87.5
4.000 100.1 102.1 98.1 96.1 92,1 95.1 90.,1 88.1
5.000 ?8.1 101.1 98.1 97.1 94.1 96.1 92,1 90.1
6.300 96,1 99,1 97,1 9.6 94,6 95.1 93.1 93.1
8.000, 94,0 98.0 98,0 94.0 94.0 97.0 96.0 95.0
10.00, 1.8 97.3 94.8 96.3 94.8 97.8 97.8 964.8
12.50 0 91.5  972.5 97.5 97.0 92.5 97.5 95.5 96.5
16.00 88.0 9%.0 97.0 98.0 97.0 95.0 93.0 94.0
20.00. 87.8 94,3 946.8 97.8 94.8 94.8 91.8 92.8
25.00 86.8 "~ 92.8 93.8 946.8 925.8 3.8 ?21.8 92.8
3]_.5(); 85%.0 92.0 94.0 ?5.5 ?4.5 ?1.0 ?1.0 ?1.0
40.00 82.5 90.5 92.5 94,5 95.% 88.5 89.5 88.5
50.00 81.8 846.8 ?21.8 %3.8 ?5.8 86.8 84.8 85.8
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" Corrected 1/3 Octave SPL's

'Test Model: Contoured Plug Nozzle
Reservoir Pressure = 22 psig
Atmospheric Pressure = 29.64 in Hg.

.200
.250
.315
. 400
.500
.630

. 800
.000
.250
.600
.000
.500
.150

.000
. 000
. 300
.000.
10.00,
12.50 °
16.00

20.00
25.00
31.50
40.00
50.00

POV WNNFHHRPRS.OOO0OO0OO0DO

15

86.0
90.0
93.0

95.0

98.0
102.0
104.0

106.0

107.0
108.0
109.0
108.0
108.0
107.1
106.1
104.1
102.0
9%.8
8.5
97.0
95.8
93.8
92.0
?1.5
?1.8

83.0
86.0
90.0
93.0
97.0
100.0
103.0
105.0
106.0
107.0
108.0
106.0
10S.0
105.1
103.1
102.1
100.0
99.8
99.5
99.0
98.8
97.8
92.0
88.5
88.8

76.0
81.0
84.0
87.0
?0.0
?1.0
?23.0
95.0
?7.0
99.0
100.0
1020
102.0
103.1
102.1
102.1
102.0
101.8
103.5
104.0
103.8
101.8
- 99.0
?7.5
?5.8

Measurement - Radius R = 3.05 m

Dry Bulb Temp.
Wet Bulb Temp.

Theta in degrees

76.0
80.0
82.0
85.0
86.0
88.0
?1.0
?23.0
?5.0
?7.0
98.0
99.0
100.0
100.1
99.6
100.1
100.0
i01.8
103.5
104.0
102.8
100.8
100.0
98.0
95.8

74.0
78.0
80.0
81.0
83.0
85.0
87.0
89.0
90.0
92.0
?3.0
95.0
97.0
97.1
100.1
105.1
107.0
104.8
102.5

100.8
100.8
98.0
9595
95.8

- 1hy -

30

73.0
77.0
80.0
82.0
83.0
85.0
87.0
89.0
90.0
?2.0
93.0
94.0
95.0

- 96.9

97.1
98.1
99.0
101.8
104.5
101.0
?9.8
99.8
100.0
100.5

100.8

=55°F
= 48° F
105 120
74.0 72.0
76,0 74.0
78.0 77.0
80.0 78.0
82.0 2.0
83.0 83.0
86.0 84.0
88.0 846.0
89.0 87.0
90.0 89.0
90.0 90.0
93.0 94,0
5.0 100.0
8.1 100.1
100.1 104.1
106.1 106.1
106.0 104,00
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100.0 100.0
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91.8 91.8
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Corrected 1/3 Octave SPL's

Test Model: Contoured Plug Nozzle Measurement - Radius R = 3.05 m
Reservoir Pressure = 44 psig Dry Bulb Temp. = 63° F
Atmospheric Pressure = 29.57 in Hg Wet Bulb Temp. = 51° F

Theta in degrees

f (kHz) - = = = = = = = = = = = == - = - = I e S
15 30 45 60 75 30 105 120 PUWL
.200 91.0 90.0 86.0 84.0 84.0 86.0 87.0 87.0 105.9
.250 95. 0 92.0 87.0 95.0 85.0 87.0 88.0 88.0 109.6
.315 37.0 94,0 88.0 87.0 87.0 88.0 89.9 89.0 109.2
400 980 96.0 88.0 88,0 88.0 90,0 B89.0 90.0 110.3
.500 100.0 98.0 89.0 90.0 89.0 90.0 ?1.0 ?1.0 111.9

. 800 102.0 102,0 93.0 22,0 ?2.0 92.5 92.0 94,0 114.7
.000 104.0 104.0 ?6.0 94,0 ?4.0 ?4.0 92,0 94,0 116.5
.250 105.0 105.0 97.0 ?5.0 95.0 5.0 ?4.0 4.0 117.5
.600 106.0 107.0 98.0 ?27.0 96.5 ?925.0 95.0 95.0 119.0
.000 106.5 107.0 ?9.0 97.0 ?7.0 7.0 96.0 6.5 119.4
.500 107.0 107.0 100,0 101.,0 100.0 99.0 98.0 102.0 121.,1
.150 106.5 105.5 101.,0 100.,0 101,0 100.0 102.,0 107.0 122.4
.000 106.1 105.1 101.6 100.1 103.,1 105.1 105.1 107.1 123.7
.000 103.1 104.1 102,1 102.,1 105.,1 106.1 107.,1 107.1 124.6
. 300 104.6 104,141 103.1 104.,1 107.,1 106.1 107.1 106.6 125.1
.000 103. 4 102.9 103.4 107.4 106.9 104.9 106.9 106.4 125.2
10.00, 100.8 101.8 104.8 107,3 1046.8 105,33 105.8 105.8 124.9
12.50 -+ 101.0 101.% 106.,0 106.5 106,55 105.5 105.5 106.0 124.8

16.00 . 99.9 100,9 105.9 105.9 105.9 104.9 103.9 103.9 124,0
20.00 . 99.7 100.,7 105,2 105.7 105.7 103.7 103.7 103.7 123.6

OV WNNEHERO D000

25. 00 98. 7 99.7 104,2 104.7 104.7 103.7 102.7 101.7 122.6
'31.50 96.9 "97.9 103.,4 103,9 103.9 102.9 101.9 101.9 121.9
40.09 95. 4 98.4 102.4 104.4 103.4 102.4 102.4 99.4 121.5
50.00 96. 8 98.8 102.,8 104.8 103.8 101.8 101.8 100.8 121.6

~ -
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APPENDIX IV

The absorption corrections based on the Evans and Bass relation [28],
are quite large at higher band-center frequencies fc > 63 kHz (see Table
I-3). The SPL's so corrected and the calculated PWL's show a sharp
increase for fc 2 63 kHz. Such an increase in the radiated noise levels
suggests that the predicted magnitude of the absorption corrections at
higher band-center frequencies may be questionable. For further details
see Appendix I. Therefore the acoustic results presented in the main body
of the report are based on corrected SPL data for band-center frequencies
up to fc = 50 kHz. To facilitate any future analysis of the original
acoustic data by an alternate approach for calculating the absorption
corrections, the uncorrected SPL data for fc = 200 HZ to 100 kHz are also

tabulated on pp. 161-183.
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Uncorrected 1/3 Octave SPL's

Test Model :

Reservoir Pressure = 15 psig
Atmospheric Pressure = 29 .42 in Hg

S W NN = = = 0 OO0 00 O O

w

6.
8'

10.
12.
16.
20.

25

31.
40.

50
63
80

10070V

.200
.250
.315
.400
.500
.630
.800
.000
.250
.600
.000
.500
.150
.000
.000

300
000
00
50
00
00
.00
50
00
.00
.00
.00

100
104
104
104
104
104
103
101
99
99
96
94
93
92
89
89
89
87
84
717
69
60

Conv Nozzle

101
103
104
104
104

103.

102
100
98
96
96
95
94
93
93
93
89.
84
78
70
64
62

100
100
100
100
100
100
98
97
97
97
97
97
94
87
81
74
64

Dry Bulb Temp. =
Wet Bulb Temp. =

83°F
71°F

100
101
100
99
99
99
96
92
83

78

72

100
100
101
100
98
97
98
94
89
80
74
74

101
101
102
102
101
929
98
98
97
94
89
81
75
71
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Uncorrected 1/3 Octave SPL's

Test Model : g5y Nozzle

Reservoir Pressure =

22 psig Dry Bulb Temp. «83°F
Atmospheric Pressure =59 ,, ;. Hg Wet Bulb Temp. = 71°F
£ (kHz) —___...Theta in degrees _______ _____________
15 30 45 60 75 90 105 120
0.200 90 85 78 77 75 74 76 74
0.250 93 88.5 84 81 79 78 78 76
0.315 97 92.5 87 85 83 82 80 78
0.400 101 96 89 86 85 84 80 80
0.500 104 98 92 88 87 86 83 84
0.630 105 102.5 95 91 90 88 85 85
0.800 107 106 97 93 92 90 87 86
1.000 108 108 100 95 94 92 90 90
1.250 109 110 101 96 95 94 91 91
1.600 109 111 102.5 99 97 95 93 92
2.000 109 112 104 100 98 96 95 93.5
2.500 109 110 105 101 100 99 95 95.0

3.150 108 109 105 102 102 100 100 103
4.000 106 107 105 101.5 102 103 103 105
5.000 104 106 105 102 104 105 106 107
6.300 100 105 105 104 105 106 107 107

8.000 98 104 105 106 105 105 105 107
10.00 98 102 105 107 105 104 105 105
12.50 97 101 105 107 103 104 105 105
16.00 96 101 105 104 103 102 103.5 102
20.00 95 101 105 104 103 103 103.5 102
25.00 95 100 103 104 103 102 103 102
31.50 95 100 101 100 102 101 103 102
40.00 89 96 98 96 98 100 100 98
50.00 83 87 91 92 93 93 96 92
63.00 76 80 83 81 85 86 88 85
80.00 72 75 77 75 80 - 82 80 77
1000 . 71 71 72 70 72 70 70 70
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Uncorrected 1/3 Octave SPL's

Test Model

Conv Nozzle

Reservoir Pressure = 30 psig

Atmospheric Pressure =

f (kHz) __  _

0.200
0.250
0.315
0.400
0.500
0.630
0.800
1.000
1.250
1.600
2.000
2.500
3.150
4.000
5.000
6.300
8.000
10.00
12.50
16.00
20.00
25.00
31.50
40.00
50.00
63.00
80.00
100.0

15

94.5

98
101

104.
106.
109.
111.

113
114

114,

115
115
115
114
113

w »n U un

111.5
110.

109
108

106.
104.5

104

102.5

100
95.
87
80
74

5

91.5

95

100
103
106

109.

113
115
117
118

117,

116
114

112.

111
110
109

107.

107
107
107

106.2

104
98.
92
84
76

2

29.42 in Hg

45

85
86.5
89
91
93.5
96
99
101
104
107
109
110.
110.
111,
111.
111.
111.
112
112.
113
112.
112
110.
108
104
96
88.5
81

60

81
84
87
90
92,
95
97
99
101
103

104.

106

109
111
112
114

nw O O © u Wun

114.
5 114,
114,

5 112
111
5 107
103
97
89
83

107.

75 90

84 82
85.5 84

88 86

89 87.8
91 89.5
93 91.5
95 94
96.5 95

98 97.3
101 98
103 101
105.5 104
108.7 107.
110 112
112 115
113 115
113 113
113 111.5
112.2 110.2
111.2 109.2
110 109
108.5 108.
106 107
102 104.
98 99
91.5 91
845 86

76 80

Dry Bulb Temp. = g3°F

Wet Bulb Temp. =7]1°F

101
107
109.5
111.5
112
111.8
111
110.6
109.5
109
108
107
104
98

91

86

80

101
109
114
116
115
113.5
112
111
109
108
107.5
106.5
104.2
101.5
95

89

84

78
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Uncorrected 1/3 Octave SPL's

Test Model : Conv Nozzle
Reservoir Pressure = 37 psig Dry Bulb Temp. =83°F
Atmospheric Pressure - 29.42 in Hg Wet Bulb Temp. = 71°F
£ (kHz) . ___________ Theta_in degrees __________________
15 30 45 60 75 90 105 120
0.200 99 95 89 85.5 84 83 82.6 82
0.250 102 95.5 90.5 87 86.5 84 83.0° 83
0.315 105.5 100 92.0 89.5 87.8 86 84 84
0.400 109 103 94 92 89 87 86 85.2
0.500 111 106 96.5 94.2 91 88.5 87 87
0.630 114 109 99 96 93 90.5 89 88.
0.800 115.5 111 101.5 98.5 95 92.5 91 90.2
1.000 117 115 104.5 100 16.5 94.5 93 92
1.250 117 117.7 106.5 101.2 98 96.2 94.6 95
1.600 117 119.5 108, 103.8 99.5 98 96.5 99
2,000 117.5 119.5 109. 104.5 101.7 100.5 99 105

2.500 117.5 119 110.
3.150 117 117 110.
4.000 116.5 115.2 111.
5.000 115.5 114 111.

106 104 103.5 103 112
107.5 107 107 107 116.2
109 109.5 111 113 116
110.7 111.5 115 117 114
6.300 114.5 112.5 112. 112 114.5 117 115.6 112.5
8.000 113.5 115 113. 113 115 115.6 113.5 111.2
10.00 111.3 111 114 114 115 113.7 112 111
12.50 109.5 110 116 114 113.2 113 111 110
16.00 108 109.5 115.7 114 112 112.5 110.6 110
20.00 107 109.5 114.5 113.7 111 112.5 110.2 108.6
25.00 105 109.5 113 113 110 111.5 109.7 108
31.50 103.5 109 110.5 110.5 109.2 119 109 106
40.00 100.5 105 106 107 108.3 109 108 102
50.00 96.7 99.5 101 101.5 105 104.5 103 95

O NN W DM UL UL LM UL LU

63.00 91.5 93.0 95 96 98 98 97 89
80.00 85 86 88 88.5 92 91 91 83
100.0 80 80 78 78 83 82 83 80
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Uncorrected 1/3 Octave SPL's

Test Model : Conv Nozzle

Reservoir Pressure = 44 psig Dry Bulb Temp. = 83°F
Atmospheric Pressure = 29.42 in Hg Wet Bulb Temp. = 71°F
£ (kHz) ____________ Theta in degrees ____ -

15 30 45 60 75 90 105 120
0.200 101 93 88 86 83 82 81 81
0.250 104 96 90 89 85 84 83 82.5
0.315 107 101 92 90 87 86 85 83
0.400 110 104 94 92 89 88 87 84
0.500 112 107 98 94 92 90 88 86
0.630 114.6 110 100 96 93 91 90 88
0.800 116 113 103 99 95 94 93 91
1.000 117 116 105 100 97 96 95 92.5
1.250 118 117.5 107 101 99 97 96 95
1.600 119.2 119 108 102 100 98 96 95
2.000 119.2 119 109 104 102 100 99 100
2.500 119 118.5 110 105 104 103 104 106
3.150 118 117.5 110 105.5 106 108 111 114
4.000 117.7 117 111 107 108 114 113 114
5.000 116 116 111 109 112 115 113 114

[=))

.300 115 115 112.5 113 114 114 112 111
8.000 114 113 113 116 113 112 112 111
10.00 112.6 112.5 115 116 111 112 111 111
12.50 111 112 116 115 111 111 111 109
16.00 110 111 116 113.5 111 111 111 109
20.00 109 111 114 113 111 111 110 109
25.00 107.5 111 114 113 111 111 110 108
31.50 106 110.5 114 113 111 111 109 107.5
40.00 102 108 109 109 109 108 105 106

50.00 97 101 104 104 103 101 100 100
63.00 88 94 96 98 96 95 92 90
80.00 87 90 90 90 90 88 86 86
100.0 76 81 80 80 80 80 80 80
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Uncorrected 1/3 Octave SPL's

Test Model : Conv Ndzzle

Reservoir Pressure = 51 psig : Dry Bulb Temp. = 83°F

Atmospheric Pressure =29.42 Wet Bulb Temp. = 71°F
f (kHz) — --Theta_in degrees__________ =~
) 15 30 45 60 75 90 105 120
0.200 102 97.5 91 88 86 84 83 . 82
0.250 105 100 94 90 88 86 85 . 83
0.315 109 1046 96 91.5 89.5 85 86 84
0.400 112 107 98 94.5 92 89 88 86
0.500 114 110 105.5 96 93.5 91 90 87.5
0.630 116 113 103 98.5 95 93 91.5 89.5
0.800 118 115.5 106 100.5 97 95 92 91.7
1.000 119.5 117 107.5 102 98.5 97 96 94.0
1.250 120.5 119 109 103 99.7 99 98 96.5

1.600 121 120 110.5 105 101.5 101.3 100 99
2.000 121 121 111 106 103.5 103.5 103 103.5
2.500 120 121 112 107 105.5 106 107.5 109
3.150 119.7 120 112.5 108 109 111 111 113
4.000 119 119 113 110 110 114 111 13.5
5.000 117.5 117.5 114 112 111.5 114 112 113
6.3000 116 116.5 114.5 114.5 112.5 113.0 111.5 111.5
8.000 115 115.5 115.5 116.5 113 112.5 111.5 110.5
10.00 113 115 116 116 113 112 111.2 110

w

12.50 112 114 116.5 115 113 111.7 111 109.5
16.00 111 113 116 113.5 113 111.7 110.5 109
20.00 110.5 113 115.5 114 112 111.7 110 108.5
25.00 109 112 114.5 115 111.5 111.7 109 108

31.50 107 110.5 113 12.5 110 111 107.5 107.5
40.00 104 107 108 108 107 108 104 107

50.00 100 101 101 103 102.5 102 99 98.5
63.00 94 96 96 97 98 95 94 9%
80.00 88 89 87 86 89 88.5 84 85.5
100.0 80 80 80 80 80 80 72 80
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Uncorrected 1/3 Octave SPL's

Test Model :contoured PN

Reservoir Pressure = 15 psig : Dry Bulb Temp. =55°F

Atmospheric Pressure = 29.64 in Hg Wet Bulb Temp. =g, .p
RH = 60

£ (kHz) - Theta_in_degrees _____________ .

0.200 81 74 73 70 72 72 72 72
0.250 86 80 76 73 75 74 73 73
0.315 90 85 79 76.5 78 76 76 74
0.400 92 87 81 78 79 78 77 74
0.500 95 90 84 81 80 80 80 77
0.630 98.5 93 86 84 83 82 80 79
0.800 103 95 87.5 86 83 84 83 79
1.000 103 98 90 88 86.5 85.5 85 82
1.250 104.5 100 93 90 87 87 87 83
1.600 105 103 94 91 88 88 88 84
2.000 105 103 95 92 89 89.5 88 85
2.500 105 103 97 94.5 92 90 89 87
3.150 102 103 98 95 92 91 90 87.5
4.000 100 102 98 96 92 95 90 88
5.000 98 101 98 97 94 96 92 90
6.300 96 99 97 96.5 94.5 95 93 93
8.000 94 98 98 96 94 97 96 95
10.00 92 97.5 97 96.5 97 98 98 97
12.50 91 97 97 96.5 97 97 95 96
16.00 88 95 97 98 97 95 93 94
20.00 88 94.5 97 98 97 95 92 93
25.00 88 94 95 98 97 95 93 94
31.50 87 94 96 97.5 96.5 93 93 93
40.00 84 92 94 96 97 90 91 90
50.00 80 85 90 92 94 85 83 84
63.00 73 74 84 84 87 80 78 75
80.00 68 70 78 75 82 73 71 69
100.0 58 58 67 66 74 60 58 58
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Uncorrected 1/3 Octave SPL's

Test Model : Contoured PN

Reservoir Pressure = 22 psig. . Dry Bulb Temp.= 55°F
Atmospheric Pressure = 29.64 in Hg. Wet Bulb Temp.= 48°F
£ (kMz) Theta in degrees ________ __________
15 30 45 60 75 90 105 120
0.200 86 83" 76 76 74 73 74 72
0.250 90 86 81 80 78 77 76 74
0.315 93 90 84 82 80 80 78 . 77
0.400 95 93 87 85 81 82 80 78
0.500 98 97 90 86 83 . 83 82 82
0.630 102 100 91 88 85 85 83 83
10.800 104 103 93 91 87 87 86 84
1.000 106 105 95 93 89 89 88 86
1.250 107 106 97 95 90 90 89 87
1.600 108 107 99 97 92 92 90 89
2.000 109 108 100 98 93 93 90 90
2.500 108 106 102 99 95 94 93 94
3.150 108 105 102 100 97 95 95 100
4.000 107 105 103 100 97 96.8 98 100
5.000 106 103 102 99.5 100 97 100 104
6.300 104 102 102 ~ 100 105 98 106 106
8.000 102 100 102 100 107 99 106 104
10.00 100 100 102 102 105 102 104 103
12.50 98 99 103 103 102 104 102 101
16.00 97 99 104 104 101 101 100 100
20.00 96 99 104 103 101 100 100 99
25.00 95 99 103 102 102 101 102 98
31.50 - 94 94 101 102 100 102 100 96
40.00 93 90 99 99.5 97 102 98 95
50.00 90 87 94 94 94 99 90 90
63.00 94 79 88 88.5 88 93 87 84
80.00 80 72 82 83 81 86 78 76
100.0 72 66 74 84 73 81 73 70
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Uncorrected 1/3 Octave SPL's

Test Model :Contoured PN

Reservoir Pressure = 30 psig
Atmospheric Pressure = 29.43 in Hg

£ (kHz) ____________ Theta_in_degrees ____________
15 30 45 60 75
0.200 90 89 80 78 80
0.250 93 91 82 79.5 81.5
0.400 97 94.5 87 84 86
0.500 100 96.5 89 86 88
0.630 102 99 92 89 89.7
0.800 104.5 102.5 94 91 92
1.000 106 104 96 94 93.8
1.250 107 106.5 99 96 95
1.600 107 108 101 97 96
2.000 108 108 103 98 97
2.500 108 108 104 99.5 98
3.150 107.5 108 105 101 100.5

4.000 107 108 105 101 100
5.000 106.5 107 105 101 100
6.300 105.5 106 105 102 103
8.000 104 105 105 102 104
10.00 102.5 104 105 103.5 104
12.50 101 101 105 104 103

16.00 100 101 105 104 102.5
20.00 99 100.5 105 104 102.5
25.00 97.5 100 105 104 102.5
31.50 96 98 104 104 101.5
40.00 94 102 102 99.5 99
50.00 91 92 98 98 95
63.00 87 87 92 93 89
80.00 83 83 86 87 83
100.0 77 77 80 82 74

Dry Bulb Temp. = 68°F

Wet Bulb Temp.

101
104
103
103
103
102.5
102
101.5
101.5
98
92.5
87

82

75

100
102
102
103
103

102.

102
101
101
100
97
92
86
80
73

= 62°F

74
76
80
81
84
86
88
89.5
91.5
92
95.5
99
102
104
104
102
102
101
101
100
100
100

90
84
76
67
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Uncorrected 1/3 Octave SPL's

Test Model : Contoured PN

Reservoir Pressure = 37 psig Dry Bulb Temp. = ggoF
Atmospheric Pressure =29.43 in Hg Wet Bulb Temp. = g2°F
£ (kHz) ____________Theta in degrees ___________________
15 30 45 60 75 90 105 120
0.200 91 88 79 80 79 78.5 77 72
0.250 92.5 90 82 83 81 81 78 75
0.315 94 92.5 85 85 84.5 83.5 80.5 78
0.400 96 94 87.5 87.5 86.5 84.5 82 80
0.500 98 96 90 90 88.5 86.5 84 81
0.630 100 99 93 91.5 91 88.5 86 84
10.800 101.5 101 95.5 94 93 90 88 87
1.000 103 103 98 95.5 94 91.5 91 89
1.250 104.5 105.5 100 97 96 93 92 91.5
1.600 105.5 106 102 98.5 98 94.5 94 93
2.000 106 107.5 103 100 99 96 95 95
2.500 106 107.5 104 101 100 97 96 97
3.150 106 107 105 102 101 98.7 98 100
4.000 105.5 106.5 105 102 101 100 99 102

5.000 105.5 106.5 105 102 102 101 101 103
6.300 106 105.5 105 103 104 102.5 103 103
8.000 105 105 105 104 105 103 104.5 105
10.00 104 104.5 105 104 105 104.5 106 105
12.50 102 102.5 105 105 105 105 105.5 104.5
16.00 101 101.5 105 105.5 105 105 105 104

20.00 99 100 105 106 105 105 104 103
25.00 99 99 105 106 105 105 103.5 102
31.50 98 97.5 104 104 103 105 101.5 100
40.00 97 96.5 101 102 101 102 100 98
50.00 94 95 99 98 97 97 97 94
63.00 89 90 95 92.5 92 91 91 81
80.00 88 85 90 87 86 85 85 84
100.0 83 80 84 80 79 79 80 78
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Uncorrected 1/3 O;tave SPL's

Test Model : Contoured PN

Reservoir Pressure = 44 psig Dry Bulb Temp. = 63°F
Atmospheric Pressure = 29.57 in Hg Wet Bulb Temp. = 51°F
£ (kHz) ____________ Theta in degrees ____________________

15 30 45 60 75 90 105 120
0.200 91 90 86 84 84 86 87 87
0.2500 95 92 87 85 85 87 88 88
0.315 97 94 88 87 87 . 88 89.5 89
0.400 98 96 88 88 88 90 81 90
0.500 100 98 89 90 89 90 91 91
0.630 101 100 91 91 91 91 91 92
0.800 102 102 93 92 92 92.5 92 94
1.000 104 104 96 94 94 94 92 94
1.250 105 105 97 95 95 95 94 94
1.600 106 107 98 97 96.5 95 95 95
2.000 106.5 107 99 97 97 97 96 96.5
2.500 107 107 100 101 100 99 98 102
3.150 106.5 105.5 101 100 101 100 102 107
4.000 IQ6 105 101.5 100 103 105 105 107
5.000 105 104 102 102 105 106 107 107
6.300 104.5 104 103 104 107 106 107 106.5
8.000 103.5 103 103.5 107.5 107 105 107 106.5
10.00 101 102 105 107.5 107 105.5 106 106
12.50 100.5 101 105.5 106 106 105 105 105.5

16.00 100 101 106 106 106 105 104 104
20.00 100 101 105.5 106 106 104 104 104
25.00 100 101 105.5 106 106 105 104 103
31.50 99 100 105.5 106 106 105 104 104
40.00 97 100 104 106 105 104 104 101
50.00 95 97 101 103 102 100 100 00
63.00 91 95 100 100 100 99 96 94
80.00 88 &9 97 96.5 97 95 93 92
100.0 84 87 94 92 91 90 92 89
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Uncorrected 1/3 Octave SPL's

Test Model :Contoured PN

Reservoir Pressure = 5] psig ' Dry Bulb Temp. = 68°F
Atmospheric Pressure = 29 .43 in Hg Wet Bulb Temp. = 62°F
f (kHz) ceeeeee——_Theta _in degrees

15 30 45 60 75 90 105 120
0.200 91 89 84 85 85 87 86 86
0.250 91.5 90.5 86 86 86 87 87.5 86.5
0.315 92.5 92 87 88 87 88 88.5 88
0.400 94 93 89 89 88 89 89 89
0.500 99 94 90.5 90 89.5 91 89 90
0.630 101 96.5 92.5 92 91 91.5 91.8 91.5
0.800 103 94 94 93.5 92 92.5 93 92.5
1.000 105 100 95.5 95 93.5 94 94 94
1.250 105.5 101.5 97 96 95 94.5 94 94.5
1.600 106  102.5 98.5 97 96.5 95.5 95 96
2.000 106 104 100 98 98 97 96.5 99
2.500 106 104.5 101 99 100 99.5 100 103

3.150 105.5 104.5 102 100.5 101 103 104 ° 104.5
4.000 105.5 104 102 101.5 103 104 106 106
5.000 104.5 104 103 103 105 105 106 106
6.300 103.5 104 104 104 106 106 106 106
8.000 102.5 103 104 105 105 105 106 105.5
10.00 101.5 102.5 104 105 105 105 105 105.5

12.50 100 102 104.5 105 105 104 104.5 104
16.00 99 101.5 104.5 105 105 104 103.5 104
20.00 98 101 104.5 105.5 105 104 103.5 103
25.00 97.5 100 104.5 105.5 105 104 103.5 102
31.50 96 99 104 105 103.5 103.5 102.5 102
40.00 95 97.5 103 103.5 102 102 100 100
50.00 93 96 101 101 99 99.5 98 96
63.00 91 94 97 98 96 95.5 93 91
80.00 89 92 94 94 92 92 88 87
100.0 84 88.5 90 90 88 88 83 83
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Uncorrected.1/3 Octave SPL's

Test Model : Conical Plug

Reservoir Pressure = 30 psig. Dry Bulb Temp. =55°F
Atmospheric Pressure = 29,64 in. Hg Wet Bulb Temp. =48°F
£ (kHz) . Theta_in_degrees __ ____ e
15 30 45 60 75 90 105 120
0.200 90 88 78 78 77 77 77 72
0.250 93 90.5 82 80.2 80 79 78 74
0.315 97 94 86 84 83 81.2 80 76.5
0.400 99.5 96 88.5 85.8 85 83 82 78
0.500 102 98.5 91 87.8 87 84.5 84 80
0.630 105 101 94 90.8 90 87 86 82
0.800 106 104 96 92 91.6 88.5 87.5 84
1.000 107 106 98.5 94 93.5 90.5 88.5 86
1.250 108 107 101 95.5 95 92 90 88.5
1.600 108.5 108.5 103 96.5 96.5 93.6 91.5 90.5
2.000 109 108.5 103.5 98 98 95 93 92
2.500 109 108.5 104.5 100 99.5 96.5 94 95
3.150 109 108.2 104.5 101 101 98 96 100
4.000 108.5 108 104.8 101.8 102 99 100 103
5.000 108 107 104.8 102.5 103 101 103 105
6.300 107 105 104.8 103 103.5 102.8 105 106
8.000 106 104 104.8 104 104 103.5 104.5 105
10.00 104 103.5 104.8 104 104 103.8 104 103
12.50 12 103 104.8 105 104 103.8 102.6 102
16.00 101 101.5 104.8 105.5 104 103.8 102 100.5
20.00 100 101 104.8 105 103.5 103 101 100
25.00 99.2 99.5 104.8 105 102.5 102 101 99.5
31.50 97.2 97.5 103.5 104 100.5 100 99.5 98
40.00 96 96 101 102 100 98.5 98 96.5
50.00 92 93 96 98 97 95 94 92.5
63.00 87 88 91 92 92 88 88 87
80.00 80 83. 86 87 84 82 81 80
100.0 72 78 81 82 76 74 72 66




Uncorrected 1/3 Octave SPL's

Test Model

Conical Plug

Reservoir Pressure = 37 psig

Atmospheric Pressure = 29,57 in. Hg

0.200
0.250
0.315
0.400
0.500
0.630
0.800
1.000
1.250
1.600
2.000
2.500
3.150
4.000
5.000 -
6.300
8.000
10.00
12.50
16.00
20.00
25.00
31.50
40.00
50.00
63.00
80.00
100.0

100
102
103.
105
107
107.
108
109
107.
108
108
107,
106
105.
104
103.
103
101
99
97.5
95.5
93
91
86

n

98.5
101
103.
106
107
108
108.
108.
108.
108,
107,
107
106.
104,
103.
102.
101.
100.
99.5
97.5
95
92
88

vl N O 0

N »n L Bt n

100
102
103.5
105
106.5
107
107
108
108
108
108
108
107.5
107
106
104.5
101.6
97.8
93

88

100.

102

103.

104

105.

107
108
109
109
109
109

108.

107
105

101.

97
92
87

100
102
103.
104.
106
106.
107
107
107
107

106.5
105.5

104
100
94.8
91
86

102
104
106

106.
107.
107.
107.
107.
107.
107.

106

103.

99
94

87.

[V, RV BV, RV, RV, RV, e ]

100.5
103

105.5

107
107
106.8
106.5
106.5
106
105.5
106
104

100.8

97
91
86
81

Dry Bulb Temp. =51°F
Wet Bulb Temp. =45°F

82.5
84
86
88
90
92
95
98
102
104
106.
106.
108
108
107
106.
106
105.
104
101.
97
90
84
80
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Uncorrected 1/3 Octave SPL's

Test Madel :Conical Plug

Reservoir Pressure = 5] psig Dry Bulb Temp. = 51°F
Atmospheric Pressure = 29,57 Hg. Wet Bulb Temp. = 45°F
£ (kHz) Theta_in degrees

15 30 45 60 75 90 105 120
0.200 93.5 91 87 87 88 89 99 87
0.250 95 92 88 88 89 89.5 91.5 89
0.315 97 94 89.3 89 90 90.5 92.4 91
0.400 97.5 95 90.3 90.2 91 91 93 92.5
0.500 99 96 91.8 91.2 91.8 91.8 93.5 93
0.630 101 98 93 92.3 93 92.8 94.5 94.5
0.800 103 100.6 94.5 93.2 94 93.8 95 95
1.000 104.3 103 95.6 94.5 95 95.0 95.5 96.0
1.250 105.2 105 97 96.0 96 96 96 97
1.600 106.4 106.8 98 97.0 97 97.5 97 99
2.00 107 107 99 97.5 98.3 98.5 98.8 101
2.500 107 107 100 98.6 99.6 99.5 101 103
3.150 107 106 100.5 100 101.8 102.5 104 104.6
4.000 107 105.6 101 101 103 104.3 105.8 105.5
5.000 106.8 105 102 103 104.6 105 106.5 106
6.300 105 104.5 103 105 105.6 106.5 106.5 106.7
8.000 103.5 104 103 107 105.6 106.5 106.8 106.4
10.00 103 103.8 104 107 106.7 106.5 106 106
12.50 101.8 103.3 104.5 107 106.7 105.5 105.5 105
16.00 101.7 103 105 107 106.7 105.5 105 104.5
20.00 100 103 106 107 106.7 105 104.8 104
25.00 98.8 103 106 107 106.7 105 104.8 103
31.50 99 102.6 105 106 106 104.8 103.8 102
40.00 97.5 101 104.5 105 104.5 104 103 101
50.00 94.8 99 103 103 103 102 101 99.5
63.00 91.6 98.6 100.5 100 101 100 98 97
80.00 89 93.5 97.5 98.5 98.8 97 95 94
100.0 86 90.5 95.0 95.5 96 93 92.6 89
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Uncorrected 1/3 Octave SPL's

Measuring Station : 6 = 90°

Models -—---Ambient Conditions _ __
P DBT WBT
atm

(in. of Hg) °F °F

(i) Solid Conical Plug 29.43 68 62

(ii) Porous Plug (10%) 29.37 73 64

(iii) Porous Plug (4Z) 29.32 60 57

(1) (ii) (iii)
— 2.0 2.5 4.0 2.0 2.5 4.0 2.0 2.5 4.0
f

0.200 68.5 76 83 66 76 80 69 77 82
0.250 71 78 83.5 70 79 83 72 79 83
0.315 74.5 80 85 73 81 84 75 81 84
0.400 76 82.5 86 76 82 86 76 82.5 85
0.500 78.5 84 87 78 85 87 78.5 84 86
0.630 82 86 88.5 80 87 89 81 86.5 88
0.800 83 88.5 90 82 90 91 83 88 90
1.000 84.5 91 92 85 91 92 85 90 92
1.250 87 92 94 87 92 95 86 93 93
1.600 88.5 95 96 87.5 95 95 87 94.5 95
2.000 90 97 97 90 96 97 89 96 96
2.500 91 100 99 90 97 98 90.5 97 98
3.150 93 103 100 91 102 100 91 101 99
4.000 94.5 104 102 92 104 104 93 101 101
5.000 95.5 104 104 95 104 106 95 102 103
6.300 97 104 105 98 105 107 96 104 105
8.000 98 104 106 98 104 106.5 96 104 106
10.00 98 104 106 98 102 106 96 104 106
12.50 98.5 103 105.5 99 101 106 95 103 106
16.00 97.5 102 105.5 97 100 105.5 94 102 106
20.00 98 101 105.5 97 100 105 94 101 105
25.00 96 101 105.5 97 101 105 93 100 105
31.50 96 100 105.5 96 97 105 91 99.5 105
40,00 93 96 105.5 94 94 102 88 97 104
50.00 89 92 102 90 90 100 82 92 102
63.00 83 87 98 85 84 95 75 86 90
80.00 75 81 95 76 78 91 66 79 95
100.0 66 76 91 60 71 86 58 73 91
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Uncorrected 1/3 Octave SPL's

Test Model : Porous (10%)

Reservoir Pressure = 30 psig
Atmospheric Pressure = 29,23

£ (kHz) ____________ Theta_in_degrees

15 30 45 60 75
0.200 92 89 81 77 78
0.250 94.5 91 83 80 79
0.315 97 93 86 83 82
0.400 98 96 88 86 85
0.500 100 98 90 88 86
0.630 103 101 93 90 89
0.800 105 102.5 97 92 90
1.000 106 107 99 94 93
1.250 107 108 100 96 94.
1.600 108 108 102 97 96
2.000 108 108 104 99 97

2.500 108 109 104 100 98.
3.150 108 108 105 101 99

4,000 108 107.5 105 101 100
5.000 106 106 105 101 101
6.300 106 105.5 105 102 103
8.000 104 103 105 103 103
10.00 103 102 104 104 104
12.50 102 101 104 104 102

16.00 99 100 104 103 102
20.00 99 100 104 102 102
25.00 98 100 104 103 102
31.50 98 99 102 103 101
40.00 95 98 98 100 99.
50.00 90 91 93 96 93
63.00 87 85 88 90 87
80.00 81 79 82 84 80
100.0 75 74 76 77 72

Dry Bulb Temp. = gjeof

Wet Bulb Temp. = 5geop

102
104
103
102
101
101
101
101
100
98
92
86
80
68

102
103
102
102
102
101
100
100
100
97
90
84
78
68

101.5
102.5
102
102
100
100.5
99
98.5
98.5
98

95

89

82

75

68
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Uncorrected 1/3 Octave SPL's

Test Model

Reservoir Pressure = 37 psig
Atmospheric Pressure = 59 23

0.200
0.250
0.315
0.400
0.500
0.630
0.800
1.000
1.250
1.600
2.000
2.500
3.150
4.000

5.000

6.300
8.000

10.
12.

16

25
31

50

.00
20.

00

.00
.50
40.
50.
63.
80.

00
00
00
00

100.0

102
102
104
104
105
107
107
107
107
106
105
104
104
102
100
100
99
97
96
94
88
86
82

90.8
92.5
95
96
98
100
102
104
106
108
108
109
109
107
106
105
104
103
102
101
100
100
100
98
94
91
85
79

Porous (10%)

g1

86
90
92

9s5.
98.
100

102.

104
105

105.

106
106
106
106
106
106
106
106
105
105
102
97

92

88

84

100
101
102
103
103
104
105
105
106
106
105
106
106
103
100
92

88

84

Dry Bulb Temp. = 62°F

Wet Bulb Temp. = 58°F

94.5
95
96

99
100
100
102
104
106
105
104.5
105
105
105
105
102
99
92
87
82

97.5
98.5
104
106
105
105
105
105
104
104
104
101
96
90
84
76

97.
102
104
104
104
104
104
103

" 102.

102
102
98
95
88
84
76

104
104
105
105
104
103
102
100
100
100
99.
94

86

80

74
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Uncorrected 1/3 Octave SPL's

Test Model : Porous (10%)

keservoir Pressure = 51 psig Dry Bulb Temp. = 73°F
Atmospheric Pressure = 29,37 Wet Bulb Temp. = 64°F
£ (xHz) ____________ Theta in_degrees ____________________

15 30 45 60 75 90 105 120
0.200 91 89 83 85 85 85 86 86
0.250 92.5 91 85 86 86 86 89 87
0.315 94.5 92 86.5 87.5 87 87 90.5 88
0.400 96 93.5 88 88 88 88 91 88.5
0.500 98 95 90 89.5 89 89 92 89
0.630 100 97 92 91 91 91 03 90.5
0.800 101 98.5 94 92 92 92 93.5 91.5
1.000 102 100 95 93 93 93 94 94
1.250 104 101 97 95 95 95 94.5 94
1.600 105 102 98 96 96 96.5 96 94
2.000 105 103 99 98 97 98.5 96 97
2.500 105 104 1C1 99 99 100 100 102
3.150 105 104 101 99 100.5 101 102.5 107
4.000 105 104.5 101 99 100 104 104 107

5.000 105 104 102 100 104 105 105 106
6.300 103.5 103 102.5 104 106 105 105 106
8.000 103 103 104 106.8 106 105 106 106
10.00 102 102.5 104 106.5 106 105 105 106
12.50 101 102 104.5 106 105 105 105 104
16.00 99.8 102 105 105 105 105 104 103

20.00 99 101 105 105 104 104 104 102
25.00 98 100 105 105 105 104 104 103
31.50 97.6 100 105 105 105 104 103 102
40.00 96 100 104 104 104 101 101 100
50.00 94 97 102 101 102 98 97 96
63.00 88 94 99.5 99 99 95 92 90
80.00 87 92 97 95 96 92 88 88
100.0 84 88 94 92 92 86 84 82
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Uncorrected 1/3 Octave SPL's

Test Model : Porous (4%)

Reservoir Pressure = 30 psig
Atmospheric Pressure = 29.32 in Hg

Dry Bulb Temp. =60°F

Wet Bulb Temp.

= 57°F

f (kHz) Theta in_degrees

s 30 45 60 75
0.200 91 89 81 79 78
0.250 94 90 83 81 79
0.315 96 \92.5 85.5 83 82
0.400 99 95 87 85.5 84
0.500 101 96 89 88 86
0.630 103 100.5 92 91 88.
0.800 104 103 95 92.5 91
1.000 106 105 98 95 93.
1.250 107 107 100 97 95
1.600 108 108 102 98 96.

2.000 108 109 104 99.5 98
2.500 108 109 105 101 100
3.150 108 108 105 101 101
4.000 107 107.5 105 101 101
5.000 106 106.5 105 101 101
6.300 105 105 105 102.5 103
8.000 104 104 105 104 103
10.00 102 103 105 105 103
12.50 101 101.5 105 105 103
16.00 100 101 105 105 102

20.00 98 100 105 105 102
25.00 98 100 104 105 102
31.50 94 99 103 103 101
40.00 92 95 100 100 99
50.00 88 90 95 96 95
63.00 84 . 86 89 92 88
80.00 79 81 83 86 84

100.0 74 75 77 78 76

100
103
103
104
104
103
103
101
102
102
101
99
94
90
83
76

nn n un n

102
104
104
104
102.
102
100
101
101
100
97.5
93
88
81

74,5

100
103
104
105
105
105
101
102
100
100
100
97
93
88
82
71
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Uncorrected 1/3 Octave SPL's

Test Model :Porous (4%)

Reservoir Pressure = 37 psig Dry Bulb Temp. =60°F
Atmospheric Pressure =29.32 in Hg Wet Bulb Temp. = 57°F
£ (kHz) _____ e Theta_ in_degrees_ __________________._.
15 30 45 60 75 90 105 120
0.200 89 91 83 81 76 78 74 75
0.250 91 92 85.5 82.5 78 81 76 77
0.315 93 94.5 87.5 85 80.5 83 78 79.5
0.400 94.5 96 89 87 82.5 84 80 81.5
0.500 96.5 97.5 92 89 84.6 86 82 83.5
0.630 99.6 100 94 91 87 88 74 85.6
0.800 101.5 102 97 92.5 89.5 90 86 88
1.000 104 104 99 94 91.5 92 88 90
1.250 105 106 101 96 94 94 91 91
1.600 105.5 107.5 102.5 97.5 95.5 95 92.5 93
2.000 106 108 104 98.6 97 96.5 94 95
‘ 2.500 107 108 105 100 98.5 98.5 96 97
3.150 107 107.5 106 . 100.6 100 100 97 98.5
4.000 106.5 107.5 106 101.5 100.5 101.5 99 100

5.000 106 106.5 106 102 101 102.5 100.5 102
6.300 105.5 105 106 102.5 102 104 102 103
8.000 105 104 106 103.5 102.5 104 103 103
10.00 104 103 105 104 103 107 104 103
12.50 102 101.5 105 104 104 107 105 103
16.00 101.5 100.5 104.5 104 104 105 106 103

20.00 100 99 104 104.5 105 104 105 102
25.00 99 98 104 104.5 105 104 104 100
31.50 97.5 96 102 104.5 104 102 104 98
40.00 96 95 100 104 102 100 102 94
50.00 94.5 91 97 102 100 96 98 90
63.00 92 - 87 92 97 95 89 93 85.5
80.00 88 83 88 92 90 84 88 81
100.0 83 78 81 87 85 78 82 73
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Uncorrected 1/3 Octave SPL's

Test Model : Porous (47)

Reservoir Pressure = 51 psig . Dry Bulb Temp. = gQ°F
Atmospheric Pressure = 29,32 in Hg Wet Bulb Temp. = s57°F
£ (kHz) ____________Thets in degrees ____________________

15 30 45 60 75 90 105 120
0.200 92.0 90 86 85 84 86 87 87
0.250 94 92 88 86 85 87 88 88.5
0.315 96.5 94 89.5 87.5 86.5 88.5 89.5 89
0.400 98 95 90.5 89 87.5 90 90 90
0.500 99 96.5 92 90 88.5 91 90.5 90.8
0.630 102 98 93.5 91.5 90.5 92.5 91.8 92
0.800 103.5 99.5 95 93 91.5 94 92.5 93
1.000 104.5 101 96 94 93 94.5 94 94
1.250 105.5 102 97 96 94 96 95 95.7
1.600 106 103.5 99 97 95 96.5 97 98
2.000 106 105 100 98 97 98 99 100
2.500 106 105 100 100 99 99 100.5 103

3.150 106 105 101.5 100.6 100.5 100.5 103 104.5
4.000 106 105 101.5 102 101 101.5 104 106
5.000 105.5 105 102 102.5 103.5 104 105 106
6.300 104 104 102 102.5 105 104 105 106
8.000 103 104 104 105 105 104 105 106
10.00 102 103 104 105 105 104 105 104.5
12.50 101 103 104 105 104 104 104 103
16.00 100 101 104 105 104 104 104 103

20.00 99 101 104 105 104 104 104 102
25.00 98 101 104 105 104 104 103.5 102
31.50 97.5 100 104 104 104 103.5 102 101
40.00 95.5 99 101 103 103 102 100 99
50.00 93.5 97 100 101 102 100 97 97
63.00 90 94 97 98 99 96 94 93
80.00 87.5 93 94.5 95 97 93 90 88
100.0 84 90 91 92 95 89 85 84
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